Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T15:28:42.145Z Has data issue: false hasContentIssue false

A Model for Boron T.E.D. in Silicon: Full Couplings of Dopant with Free and Clustered Interstitials

Published online by Cambridge University Press:  01 February 2011

F. Boucard
Affiliation:
Laboratoire PHASE-CNRS, 23 rue du Loess, F-67037 Strasbourg Cedex 2, France Silvaco Data Systems, 55, rue Blaise Pascal, F-38330 Montbonnot, France CEA-LETI, 17 Av. des Martyrs F-38054 Grenoble cedex 9, France
D. Mathiot
Affiliation:
Laboratoire PHASE-CNRS, 23 rue du Loess, F-67037 Strasbourg Cedex 2, France
E. Guichard
Affiliation:
Silvaco Data Systems, 55, rue Blaise Pascal, F-38330 Montbonnot, France
P. Rivallin
Affiliation:
CEA-LETI, 17 Av. des Martyrs F-38054 Grenoble cedex 9, France
Get access

Abstract

In this contribution we present a model for transient enhanced diffusion of boron in silicon. This model is based on the usual pair diffusion mechanism including non-equilibrium reactions between the dopant and the free point defects, taking into account their various charge states. In addition to, and fully coupled with the dopant diffusion we model the growth and dissolution of the interstitials and boron interstitials clusters associated with the anneal of the self-interstitial supersaturation created by the implantation step. It is thus possible to simulate a rather large set of experimental conditions, from conventional predeposition steps, to RTA after low energy implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cowern, N.E.B., Jansen, K.T.F. and Jos, H.F.F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
2. Cristiano, F., Grisiola, J., Colombeau, B., Omri, M., Mauduit, B. de, and Claverie, A., J. Appl. Phys. 87, 842 (2000).Google Scholar
3. Mathiot, D. and Pfister, J.C., J. Appl. Phys. 55, 3518 (1984).Google Scholar
4. Arienzo, Orr, Glang, R., Lever, R.F. and Lewis, R.K., J. Appl. Phys., 63(1),117 (1988).Google Scholar
5. Pichler, P., Jungling, W., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Computer-Aided Design 4, 384 (1985).Google Scholar
6. Ortiz, C. and Mathiot, D., M.R.S. Symp. Proc. 669, J5.6, (2001).Google Scholar
7. Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., Berkum, J.G.M. van, Christiano, F., Claverie, A., Jaraìz, M., Phys. Rev. Lett. 82, 4460 (1999).Google Scholar
8. Lenosky, J., Sadigh, B., Theiss, S.K., Caturla, M.J. and Rubia, T. Diaz de la, Appl. Phys. Lett 77, 1834 (2000).Google Scholar
9. Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H.J., Rafferty, C.S., Eaglesham, D.J. and Poate, J.M., Appl. Phys. Lett. 70, 2285 (1997).Google Scholar