Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-22T02:25:40.187Z Has data issue: false hasContentIssue false

A Model for Dissolution of Cao-Sio2-H2O Gel at Ca/Si<1 by Considering Disordered Structure

Published online by Cambridge University Press:  10 February 2011

Md. Mazibur Rahman
Affiliation:
Department of Quantum Engineering and Systems Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–8654, Japan, mazibur@flanker.q.t.u-tokyo.ac.jp.
Shinya Nagasaki
Affiliation:
Department of Quantum Engineering and Systems Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–8654, Japan, mazibur@flanker.q.t.u-tokyo.ac.jp.
Satoru Tanaka
Affiliation:
Department of Quantum Engineering and Systems Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–8654, Japan, mazibur@flanker.q.t.u-tokyo.ac.jp.
Get access

Abstract

A model for dissolution of CaO-SiO2-H2O (C-S-H) gel is proposed by considering a Margules type of non-ideal mixture of binary solid solutions at Ca/Si (C/S)<1. The Guggenheim and Prausnitz equations are used to represent the activities of model solids as a function of mole fractions. The Gibbs-Duhem equation, together with the activities of model solids, is applied to express the conditional solubility products of model solids as a function of C/S ratio. The determination of Guggenheim’s empirical parameters is performed with the geochemical code PHREEQE on experimental data. The dissolution model is developed by considering the effect of disorder in the structure of C-S-H gel at C/S<1. The solubility results predicted by the proposed model are comparable with experimental data. The study predicts some structural information of C-S-H gel at C/S<1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greenberg, I. S. A. and Chang, T. N., J. Phy. Chem. 69, (1965), p. 182.Google Scholar
2. Kalousek, G. L., Proc. 3rd Int. Symp. on Chem. of Cements, London (1952), p. 296.Google Scholar
3. Fujii, K. and Kondo, W., J. Chem. Soc. Dalt. Trans. 2, (1981), p. 645.Google Scholar
4. Taylor, H. F. W., J. Chem. Soc. London, 276, (1950), p. 3682.Google Scholar
5. Roller, P.S. and Ervin, G., J. Am. Chem. Soc., 62, (1940), p. 461.Google Scholar
6. Flint, E. P. and Wells, L. S., J. Research NBS 12, (1934), p. 751.Google Scholar
7. Reardon, E. J., Waste Management, 12, 2/3 (1992), p. 189.Google Scholar
8. Berner, U., Paul Scherrer Institute, Switzerland, PSI-Bericht Nr. 62 (1990).Google Scholar
9. Rahman, M. M., Nagasaki, S. and Tanaka, S., Submitted to Cem.Concr. Res. (1998)Google Scholar
10. Borjesson, S., Emren, A. and Ekberg, C., Cem.Concr. Res., 27, (1997), p. 1649.Google Scholar
11. Glasser, F. P., Macphee, D. E. and Lachowski, E. E., Mat. Res. Symp. Proc. 84, (1987), pp. 331341.Google Scholar
12. Greenberg, S. A., Cheng, T. N. and Anderson, E., J. Phy. Chem., 64, (1960), p. 1151.Google Scholar
13. Kantro, D. L., Brunauer, S. and Weise, C. H., J. Phys. Chem., 66, (1962), p. 1804.Google Scholar
14. Faucon, P., Delaye, J. M., Virlet, J., Jacquinot, J. F. and Adenot, F., Cem.Concr. Res., 27, 10 (1997), pp. 15811590.Google Scholar
15. Cong, X. and Kirkpatrick, R. J., Adv. Cem. Bases Mater. 3 (1996), p. 144.Google Scholar
16. Taylor, H. F. W., Cement Chemistry, 2 nd edition, Thomas Telford, (1997), p. 140.Google Scholar
17. Bergna, H. E., Editor, Collid Chemistry of Silica, Proceeding of the 200th National Meeting of American Chemical society, 234 (1990), p. 9.Google Scholar
18. Margules, M., Sitzungsber Wien Akad. 104, (1895), pp. 12431278.Google Scholar
19. Glynn, P. D., Comput. Geoscie., 17 (1991), p. 907.Google Scholar
20. Prausnitz, J. M., Prentice-Hall, Inc., Engelwood Cliffs, New Jersey, (1969).Google Scholar
21. Westall, J. C., Zachary, J. L. and Morel, F. M., MINEQL, Massachusetts Institute of Technology, Cambridge, Massachusetts (1976).Google Scholar
22. Parkhust, D. L., Thorstenson, L. N. and Plummer, , PHREEQE, U. S. Geological Survey (1980).Google Scholar
23. Stumm, W. and Morgan, J. J., Aquatic Chemistry, John Wiley & Sons, Inc. 3rd edi.(1996), p. 103.Google Scholar
24. Stade, H. and Muller, D., Cem. Concr. Res. 17, (1987), p. 553.Google Scholar
25. Taylor, H. F. W., Proceedings of the Fifth Int. Symp. Chem. Cement, II, 1 (1968).Google Scholar
26. Atkins, M., Glasser, F. P. and Kindness, A., Mat. Res. Symp. Proc. 212, (1991), pp. 387394.Google Scholar