Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-25T13:59:28.863Z Has data issue: false hasContentIssue false

A Model for Predicting Weld Metal Grain Refinement in G-V Space

Published online by Cambridge University Press:  15 February 2011

Ø. Grong
Affiliation:
Dept. of Materials Technology and Electrochemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
C.E. Cross
Affiliation:
Metallurgical Eng. Dept., Montana Tech of the University of Montana, Butte, MT 59701
Get access

Abstract

A model has been developed which allows for the graphical representation of undercooling and nucleation site density in G-V space (i.e. temperature gradient G versus growth rate V). This model is used to explain a unique grain structure in weldments where equiaxed grains may be found both at the fusion boundary and along the center of the weld metal. Details of this model will be given and discussed in relation to grain refinement predictions in G- V space.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Savage, W.F. and Aronson, A.H., Weld. J., 45, 85s (1996).Google Scholar
2. Kato, M., Matsuda, F. and Senda, T., Trans. Jpn. Weld. Soc., 3, 69 (1972).Google Scholar
3. Arata, Y., Matsuda, F. and Matsui, A., Trans. JWRI, 3, 89 (1974).Google Scholar
4. Ganaha, T., Pearce, B.P. and Kerr, H.W., Met. Trans., 11A, 1351 (1980).Google Scholar
5. Kou, S. and Le, Y., Met. Trans., 19A, 1075 (1988).Google Scholar
6. Cross, C.E., Loechel, L.W. and Braun, G.F., in Proc. 6th Int. AI-Li Conf. (Deutsche Gessellschaft fur Materialkunde, Oberusel, Germany, 1991), p. 1165.Google Scholar
7. Shah, S.R., Wittig, J.E. and Hahn, G.T., in Int. Trends in Welding Sci. and lech. (ASM Int., Materials Park, Ohio, 1992), p. 281.Google Scholar
8. He, Y., Gao, D., Wu, L. and Ming, L., in Proc. 3rd lnt. Conf Al Alloys (SINTEF, Trondhiem, Norway, 1992), p. 385.Google Scholar
9. Cross, C.E. and Tack, W.T., in ASM Handbook-Vol. 6 (ASM Int., Materials Park, Ohio, 1993), p. 549.Google Scholar
10. Gutierrez, A., Lippold, J.C. and Lin, W., Mat. Sci. Forum, 217–222, 1691 (1996).Google Scholar
11. Lee, M.F., Huan, J.C. and Ho, N.J., J. Mat. Sci., 31, 1455 (1996).Google Scholar
12. Soni, K. K., Levi-Setti, R., Shah, S. and Getz, S., Adv. Mat. Process., 149, 35 (1996).Google Scholar
13. Gutierrez, A. and Lippold, J.C., Weld. J., 77, 123s (1998).Google Scholar
14. Reddy, G.M., Gokhale, A.A., Prasad, K.S. and Rao, K Prasad, Sci. Tech. Weld. Join., 3, 208 (1998).Google Scholar
15. Savage, W.F., Lundin, C.D. and Aronson, A.H., Weld. J., 44, 175s (1965).Google Scholar
16. Tiller, W.A., Jackson, K.A., Rutter, J.W. and Chalmers, B., Acta Met., 1, 428 (1953).Google Scholar
17. Hunt, J.D., Mat. Sci. Eng., 65, 75 (1984).Google Scholar
18. Cross, C.E., Grong, O. and Mousavi, M., Scripta Mat., 40, 1139 (1999).Google Scholar
19. Burden, M.H. and Hunt, J.D., J. Crystal Growth, 22, 99 (1974).Google Scholar
20. Kurz, W. and Fisher, D.J., Fundamentals of Solidification (Trans. Tech. Pub., Switzerland, 1986).Google Scholar