Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-08T08:09:07.119Z Has data issue: false hasContentIssue false

A Model That Describes the Role of Oxygen, Carbon, and Silicon Interstitials in Silicon Wafers During Device Processing

Published online by Cambridge University Press:  21 February 2011

R. A. Hartzell
Affiliation:
Texas Instruments Incorporated, Central Research Laboratories P.O. Box 225936, MS 147, Dallas, Texas 75265
H. F. Schaake
Affiliation:
Texas Instruments Incorporated, Central Research Laboratories P.O. Box 225936, MS 147, Dallas, Texas 75265
R. G. Massey
Affiliation:
Texas Instruments Incorporated, Central Research Laboratories P.O. Box 225936, MS 147, Dallas, Texas 75265
Get access

Abstract

A model has been developed that simulates oxygen precipitation in silicon wafers during high temperature device processing. The approach used to calculate the nucleation and growth of oxygen precipitates is radically different from other approaches presented in the literature. A discrete rate equation representation of nucleation and growth has been transformed into a continuum representation in the form of a partial differential equation. This partial differential equation describing both the statistical clustering of oxygen during nucleation and the diffusion driven transport during precipitate growth is solved continuously starting from crystal growth through any arbitrary time-dependent temperature process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, N. et. al., Semiconductor Silicon 1981, p. 282, Huff, H.R. and Kriegler, R.J., eds., Electrochem Soc. (1981).Google Scholar
2. Rogers, B. et. al., Extended Abstracts 84–1, Electrochem. Soc., 54 (1984).Google Scholar
3. Cavitt, James H., Extended Abstracts 84–1, Electrochem. Soc., 53 (1984).Google Scholar
4. Takasu, S. et. al., VLSI Science and Technology, 33 (1982).Google Scholar
5. Ghoniem, N.M. and Sharafat, S., J. Nuclear Materials 92, 121 (1980).10.1016/0022-3115(80)90148-8Google Scholar
6. Sharafat, S. and Ghoniem, N. M., Microstructure Evolution in Metals During Irradiation Using a Unified Rate-Theory-Continuum Approach, UCLA-ENG-8041 (1980).Google Scholar
7. Yasutake, K. et. al., Phys. Stat. Sol. (a) 83, 207 (1984).10.1002/pssa.2210830122Google Scholar
8. Schaake, H.F. et. al., Semiconductor Silicon 1981, 273 (1981).Google Scholar
9. Pinizzotto, R.F. and Marks, S., Defects in Semiconductors II, Materials Research Symposia Proc. 14, 147 (1982).10.1557/PROC-14-147Google Scholar
10. Matsushita, Yoshiaki et. al., Jap. J. Appl. Phys. 19, L101 (1980).10.1143/JJAP.19.L101Google Scholar
11. Ogino, Masanobu, Appl. Phys. Lett. 41, 847 (1982).10.1063/1.93715Google Scholar
12. Kung, C.Y. et. al., Mat. Res. Bull. 18, 1437 (1983).10.1016/0025-5408(83)90181-2Google Scholar
13. Matsushita, Yoshiaki, J. Crystal Growth 56 516 (1982).10.1016/0022-0248(82)90474-2Google Scholar
14. Hartzell, R.A., unpublished experiments.Google Scholar
15. Gosele, U. and Tan, T. Y., Appl. Phys. A 28, 79 (1982).10.1007/BF00617135Google Scholar
16. Benton, J.L., Physica 116B, 271 (1983).Google Scholar
17. Ourmazd, A. et. al., J. Appl. Phys. 56, 1670 (1984).10.1063/1.334156Google Scholar
18. Mikkelsen, J.C., Appl. Phys. Lett. 40, 336 (1982).10.1063/1.93089Google Scholar
19. Stavola, M. et. al., Appl. Phys. Lett. 42, 73 (1983).10.1063/1.93731Google Scholar