Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-20T20:13:17.619Z Has data issue: false hasContentIssue false

Modeling of the Association of Metal Ions with Heterogeneous Environmental Sorbents

Published online by Cambridge University Press:  15 February 2011

John C. Westall*
Affiliation:
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331–4003, USA.
Get access

Abstract

The use of mechanistic (surface-complexation, electric-double layer) and semi-empirical (affinity spectrum) models for representation of the association of metal ions with heterogeneous environmental materials, such as humic acids and soil particle surfaces, is compared. It is seen that mechanistic models are not nearly as mechanistic as one generally assumes, and that semi-empirical models are much more valuable than one might assume by comparison to simple Kd, models. A semi-empirical discrete-log-K-spectrum model was used to describe the binding of Co(II), as a function of pH and NaClO4 concentration, to two environmental substrates: leonardite humic acid and a kaolinitic subsoil. Excellent agreement of the model and the data was obtained over a wide range of solution composition. These models appear to be the most promising among several alternatives for modeling interactions of metal ions with complex heterogeneous environmental materials over a wide range of solution composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waite, T. D., in Trace Element Speciation: Analytical Methods and Problems, edited by Batley, G. E. (CRC Press, Boca Raton, 1989), pp. 117184.Google Scholar
2. Bassett, R. L. and Melchior, D. C., in Chemical Modeling of Aqueous Systems II, edited by Melchior, D. C. and Bassett, R. L. (ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990), pp. 114.Google Scholar
3. Morel, F. M. M., Westall, J. C., O’Melia, C. R., and Morgan, J. J., Environ. Sci. Technol. 9, 756 (1975).Google Scholar
4. Stumm, W. and Brauner, P., in Chemical Oceanography, 2nd ed., edited by Riley, J. P. and Skirrow, G. (Academic Press, New York, 1975), Vol. I, pp. 173279.Google Scholar
5. Eberle, S. H. and Feuerstein, W., Naturwissenschaften, 66, 572573 (1979).Google Scholar
6. Westall, J. C., “FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants, Version 1.2,” Report 82–01, Department of Chemistry, Oregon State University, Corvallis, OR, 1982.Google Scholar
7. Leuenberger, B. and Schindler, P. W., Anal. Chem. 58, 14711474 (1986).Google Scholar
8. Dzombak, D. A., Fish, W., and Morel, F. M. M., Environ. Sci. Technol. 20, 669675 (1986).Google Scholar
9. Fish, W., Dzombak, D. A., and Morel, F. M. M., Environ. Sci. Technol. 20, 676683 (1986).Google Scholar
10. Brassard, P., Kramer, J. R., and Collins, P. V., Environ. Sci. Technol. 24, 195201 (1990).Google Scholar
11. Cabaniss, S. E. and Schuman, M. S., Geochim. Cosmochim. Acta 52, 185193 (1988).Google Scholar
12. Cabaniss, S. E. and Schuman, M. S., Geochim. Cosmochim. Acta 52, 195200 (1988).Google Scholar
13. Perdue, E. M. and Lytle, C. R., in Aquatic and Terrestrial Humic Materials, edited by Christman, R. F. and Gjessing, E. T. (Ann Arbor Science, Ann Arbor, MI, 1983), pp. 295313.Google Scholar
14. Perdue, E. M. and Lytle, C. R., Environ. Sci. Technol. 17, 654660 (1983).Google Scholar
15. De Wit, J. C. M., van Riemsdijk, W. H., Nederlof, M. M., Kinniburgh, D. G. and Koopal, L. K., Anal. Chim. Acta 232, 189207 (1990).Google Scholar
16. Nederlof, M. M., De Wit, J. C. M., van Riemsdijk, W. H., and Koopal, L. K., Environ. Sci. Technol. 27, 846856 (1993).Google Scholar
17. Tipping, E. and Hurley, M. A., Geochim. Cosmochim. Acta 56, 36273641 (1992).Google Scholar
18. Tipping, E., Environ. Sci. Technol. 27, 520529 (1993).Google Scholar
19. Bartschat, B. M., Cabaniss, S. E., and Morel, F. M. M., Environ. Sci. Technol. 26, 284294 (1992).Google Scholar
20. Davis, J. A. and Kent, D. B. in Mineral-Water Interface Chemistry, edited by Hochella, M. F. and White, A. F. (Reviews in Mineralogy 23, Mineralogical Society of America, Washington, DC, 1990), pp. 177248.Google Scholar
21. Stumm, W., Chemistry of the Solid-Water Interface (Wiley, New York, 1992), Chapter 2.Google Scholar
22. Westall, J. and Hohl, H., Adv. Coll. Interfac. Sci. 12, 265294 (1980).Google Scholar
23. Westall, J. in Chemical Processes at the Mineral Surfaces, edited by Davis, J. A. and Hayes, K. (ACS Symposium Series 323, American Chemical Society, Washington, DC, 1986), pp. 5478.Google Scholar
24. Dzombak, D. A. and Morel, F. M. M., Surface Complexation Modeling (Wiley, New York, 1990).Google Scholar
25. Smith, K. S., “Factors Influencing Metal Sorption onto Iron-Rich Sediments in Acid-Mine Drainage,” PhD Thesis, Colorado School of Mines, Golden, CO, 1991.Google Scholar
26. Loux, N. T., Brown, D. S., Chafin, C. R., Allison, J. D., and Hassan, S. M., Chemical Speciation and Bioavailability 1, 111125 (1989).Google Scholar
27. Parsons, R., J. Electroanal. Chem. 118, 318 (1980).Google Scholar
28. Thomas, S. and Sherwood, P. M. A., Anal. Chem. 64, 24882495 (1992).Google Scholar
29. Hiemstra, T., De Wit, J. C. M., van Riemsdijk, W. H., J. Coll. Interface Sci. 133, 105117 (1989).Google Scholar
30. Grahame, D. C., Chem. Rev. 41, 441501 (1947).Google Scholar
31. Bard, A. J. and Faulkner, L. R., Electrochemical Methods (Wiley, New York, 1980), Section 12.3.Google Scholar
32. Herbelin, A. L. and Westall, J. C., “FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants, Version 3.1,” Report 94–01, Department of Chemistry, Oregon State University, Corvallis, OR, 1994.Google Scholar
33. Westall, J. C., “FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants, Version 2.1,” Report 82–02, Department of Chemistry, Oregon State University, Corvallis, OR, 1982.Google Scholar
34. Pabalan, R. T. and Pitzer, K. S., in Chemical Modeling of Aqueous Systems II, edited by Melchior, D. C. and Bassett, R. L. (ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990), pp. 4457.Google Scholar
35. Zachara, J. M., Resch, C. T., and Smith, S. C., Geochim. Cosmochim. Acta 58, 553566 (1993).Google Scholar
36. Westall, J. C., Jones, J. D., Turner, G. D., and Zachara, J. M., Environ. Sci. Technol., in press.Google Scholar
37. Schindler, P. W., Liechti, P., and Westall, J. C., Neth. J. Agric. Sci. 35, 219230 (1987).Google Scholar
38. Wagner, J., Westall, J. C., and Zachara, J. M., manuscript in preparation, 1994.Google Scholar