Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-20T18:55:52.325Z Has data issue: false hasContentIssue false

Modelling of Hg(3P1) Photosensitization of SiH4 and Surface Reactions of the SiH3 Radical

Published online by Cambridge University Press:  28 February 2011

Jérome Perrin
Affiliation:
Equipe Synthese de Couches Minces pour l'Energétique (ER 258 CNRS) Ecole Polytechnique -91128 PALAISEAU Cedex (France)
Ton Biroekhuizen
Affiliation:
Equipe Synthese de Couches Minces pour l'Energétique (ER 258 CNRS) Ecole Polytechnique -91128 PALAISEAU Cedex (France)
Get access

Abstract

We present an experimental study and modelling of gas phase and surface processes involved in mercury-sensitized decomposition of SiH4, leading to hydrogenated amorphous silicon (a-Si:H) film deposition in a parallel plate reactor. The total surface reaction proabability β and the sticking probability s of SiH3 on a growing a-Si:H film are determined in the 40° – 350°C temperature domain. At 100°C β ≈ 0.1 ± 0.01 whereas s ≈ β/4 which reveals an intense radical recombination on the surface. Both β and s increase as a function of temperature. At 350°C β reaches 0.21±0.01. These results are interpreted by a precursor state model for SiH3 adsorption.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Calvert, J.G. and Pitts, J.N., Photochemistry, (Wiley, New York, 1966) Chapter II.Google Scholar
[2] Saitoh, T., Muramatsu, S., Shimada, T. and Migitaka, M., Appl. Phys. Lett. 42, 678 (1983).Google Scholar
[3] Tarui, Y., Sorimachi, K., Fujii, K. and Aota, A., J. Non Cryst. Solids 59 & 60, 711 (1983).CrossRefGoogle Scholar
[4] Delahoy, A.E., J. Non Cryst Solids 77 & 78, 833 (1985)Google Scholar
[5] Inoue, T., konagai, M. and Takahashi, K., Appl. Phys. Lett. 43, 774 (1983).Google Scholar
[6] Kamaratos, E. and Lampe, F.W., J. Phys. Chem. 74, 2267 (1970).Google Scholar
[7] Robertson, R. and Gallagher, A., J. Appl. Phys. 59, 3402 (1986).Google Scholar
[8] Broekhuizen, T. and Perrin, J., to be published in Revue de Physique Appliquée (Paris).Google Scholar
[9] Perrin, J., Broekhuizen, T. and Benferhat, R., Proceedings of the European MRS 1986 meeting, vol.11 (Les Editions de Physique, Les Ulis, France, 1986) p. 129.Google Scholar
[10] Perrin, J. and Broekhuizen, T., to appear in Appl. Phys. Lett.Google Scholar
[11] Austin, E.R. and Lampe, F.W., J. Phys. Chem. 80, 2811 (1976); 81, 1134 (1977).CrossRefGoogle Scholar
[12] Yarwood, A.J., Strausz, O.P. and Gunning, H.E., J. Chem. Phys. 41, 1705 (1964).CrossRefGoogle Scholar
[13] John, P. and Purnell, J.H., J. Chem. Soc. Faraday Trans. 1, 69, 1455 (1973).CrossRefGoogle Scholar
[14] Cadman, P., Tisley, G.M. and Trotman-Dickenson, A.F., J. Chem. Soc. Faraday Trans. 1, 68, 1849 (1972).Google Scholar
[15] Biberman, L.M., Zh. Eksperim. i Teor. Fiz. 17, 416.(1977).Google Scholar
[16] Perrin, J. and Broekhuizen, T., to appear in J. Quant. Spectrosc. Radiat. Transfer.Google Scholar
[17] Schmitt, J.P.M., Gressier, P., Krishnan, M., de Rosny, G. and Perrin, J., Chem. Phys. 84, 281 (1984).Google Scholar
[18] Bouchoule, A., Laure, C., Ranson, P., Salah, D. and Henry, D., Proc. 15th Symp. Plasma Processing, edited by Mathad, G.S., Schwartz, G.C. and Smolinsky, G. (Electrocherb. Soc. inc. Pennington, New Jersey, 1985) p. 399 and recent unpublished results.Google Scholar
[19] Perrin, J., These de doctorat d’ Etat, LPNHE/XII/83, Université Paris VII (1983).Google Scholar
[20] King, D.A. and Wells, M.G., Proc. R. Soc. Lond. A 339, 245 (1974).Google Scholar