Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T14:19:05.314Z Has data issue: false hasContentIssue false

Modification of Magnetron Sputtered A-Si1-Xcx:H Films by Implantation of sn+

Published online by Cambridge University Press:  21 February 2011

N. Tzenov
Affiliation:
Central Laboratory for Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee blvd., 1784 Sofia, Bulgaria
D. Dimova-Malinovska
Affiliation:
Central Laboratory for Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee blvd., 1784 Sofia, Bulgaria
T. Tsvetkova
Affiliation:
Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee blvd., 1784 Sofia, Bulgaria
Get access

Abstract

Implantation of Sn+ into a-Si1.xCx:H films deposited by RF magnetron sputtering of silicon and graphite was carried out in order to obtain optical contrast in the layers. The expected optical effect which is an absorption edge shift to the lower photon energies accompanied by a considerable increase of the absorption coefficient was observed even for the lowest dose - 1015cm-2. This effect is more pronounced with increase of the dose. Infrared (IR) and photoelectron spectroscopy (XPS) measurements was used to study the bond configurations of implanted films. These measurements reveal that ion implantation introduces an additional disorder in the films as well as leads to their chemical modification, which could be related to the changes of the optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 B. Ruttensberger, , G. Krötz, , Müller, G., Derst, G. and Kalbitzer, S., J. Non.-Cryst. Solids 137138, 635 (1991).Google Scholar
2 Böhringer, K., Jonsten, K. and Kalbitzer, S., Nucl. Instr. Meth. B 30, 289 (1988).Google Scholar
3 Demichelis, F., Kaniadakis, G., Tagliaferro, A., Tresso, E. and Rava, P., Phys. Rev. B 37, 1232 (1988).Google Scholar
4 Tzenov, N., Tzolov, M., Dimova-Malinovska, D. and Tsvetkova, T., Nucl. Instr. Mcth. B, in press (1996).Google Scholar
5 Morgan, W. E. and Van Waser, J. R. J. Chem. Phys. 77, 964 (1977).Google Scholar
6 Nefedov, V. I., XPS of chemical compounds (Chimija, Moscow, 1984) and the references therein.Google Scholar
7 Shalvoy, R. B., Fisher, G. B. and Stiles, P. J. Phys. Rev. B 15, 1680 (1977) and the references thereinGoogle Scholar
8 Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell Univ. Press, New York, 1960)Google Scholar
9 Barancira, T., Pattyn, H., Tzenov, N., Tzolov, M., Dimova-Malinovska, D. and Tsvetkova, T., Nucl. Instr. Meth. B, in press (1996).Google Scholar
10 Lee, Wen-Yaung, J. Appi. Phys. 51, 3365 (1980).Google Scholar
11 Smith, G. B., McKenzie, D. R. and Martin, P. J., phys. stat. sol. b 152, 475 (1989).Google Scholar
12 Tzenov, N., Tzolov, M. and Dimova-Malinovska, D., Semicond. Sci. Technol. 9, 91 (1994).Google Scholar
13 Morimoto, A., Miura, T., Kumeda, M. and Shimizu, T., J. Appi. Phys. 53, 7299 (1982).Google Scholar
14 Lucovsky, G., Solid State Commun. 59, 571 (1979).Google Scholar
15 Mohr, W. C., Tsai, C. C. and Street, R. A., Mat. Res. Soc. Symp. Proc. Vol. 70, 319 (1986).Google Scholar
16 Wieder, H., Cardona, M. and Guarnieri, C. R., phys. stat. sol. b 92, 99 (1979).Google Scholar
17 Katiyar, R. S., Resto, O., Perez, R., Gomez, M. and Weitz, Z., Thin Solid Films 164, 243 (1988).Google Scholar
18 Girginoudi, D., Georgoulas, N. and Thanailakis, A., J. Appi. Phys. 66, 354 (1989).Google Scholar