Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T23:19:30.763Z Has data issue: false hasContentIssue false

A Molecular Approach to Ultrathin Multilayered Films of Titanium Dioxide

Published online by Cambridge University Press:  15 February 2011

Elaine R. Kleinfeld
Affiliation:
Department of Chemistry, Lehigh University, Bethlehem, PA 18015
Gregory S. Ferguson
Affiliation:
Department of Chemistry, Lehigh University, Bethlehem, PA 18015
Get access

Abstract

We have used solution-phase inorganic chemistry to form ultrathin, covalently bonded layers of TiO2 on silicon wafers. Ellipsometry and x-ray photoelectron spectroscopy (XPS) were used to monitor the growth of the films. The ellipsometric thickness of the TiO2 films increased linearly with the number of reaction cycles, the first absorption cycle resulting in about 3–4 Å of growth, and subsequent cycles resulting in about 1 Å of growth. We attribute this limited growth to the limited number of reactive sites on the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For reviews, see: Dubois, L.H. and Nuzzo, R.G., Annu. Rev. Phys. Chem. 43, 437 (1992); G.M. Whitesides and P.E. Laibinis, Langmuir 6, 87 (1990); A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir Blodgett to Self-Assembly (Academic, New York, 1991); G. Cao, H.-G. Hong, and T.E. Mallouk, Acc. Chem. Res. 25, 420 (1992).Google Scholar
2. Katz, H.E. and Schilling, M.L., Chem. Mater. 5, 1162 (1993).Google Scholar
3. Fischer, H.E., King, S.A., Miller, J.B., Ying, J.Y., Benziger, J.B., and Schwartz, J., Inorg. Chem. 30, 4403 (1991).Google Scholar
4. Srinivasan, S., Datye, A.K., Hampden-Smith, M., Wachs, I.E., Deo, G., Jehng, J.M., Turek, A.M., and Peden, C.H.F., J. Catal. 131, 260 (1991).Google Scholar
5. D'Anna, E., Giorgi, M.L. De, Luby, S., Luches, A., Majkova, E., and Martino, M., Thin Solid Films 228, 145 (1993).Google Scholar
6. Nakayama, T., J. Electrochem. Soc. 141, 237 (1994).Google Scholar
7. Lakomaa, E.-L., Haukka, S., and Suntola, T., Appl. Surf. Sci. 60/61, 742 (1992).Google Scholar
8. Haukka, S., Lakomaa, E.-L., Jylhd, C., Vilhunen, J., and Hornytzkyj, S., Langmuir 9, 3497 (1993).Google Scholar
9. Rausch, N. and Burte, E.P., J. Electrochem. Soc. 140, 145 (1993).Google Scholar
10. Asakura, K., Inukai, J., and Iwasawa, Y., J. Phys. Chem. 96, 829 (1992).Google Scholar
11. Jurek, K., Guglielmi, M., Kuncovd, G., Renner, C., Lukes, F., Navrdtil, M., Krousky, E., Vorlfcek, V., and Kokesova, K., J. Mat. Sci. 27, 2549 (1992).Google Scholar
12. Selvaraj, U., Prasadarao, A.V., Komameni, S., and Roy, R., J. Am. Ceram. Soc. 75, 1167 (1992).Google Scholar
13. Exarhos, G.J. and Hess, N.J. in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Haynes, T.E., Cebe, P., and Dickinson, J.E. Jr., (Mater. Res. Soc. Proc. 321, 1994) p. 393.Google Scholar
14. Angst, D.L. and Simmons, G.W., Langmuir 7, 2236 (1991).Google Scholar
15. Rodgers, Glen E., Introduction to Coordination, Solid State, and Descriptive Inorganic Chemistry (McGraw-Hill, Inc., New York, 1994), p. 164.Google Scholar
16. Fadley, C.S., J. Electron Spect. Rel. Phenom. 5, 725 (1974).Google Scholar
17. Seah, M.P. and Dench, W.A., Surf. and Interface Anal. 1, 2 (1979).Google Scholar
18. Brunner, J. and Zogg, H., J. Electron Spect. Rel. Phenom. 5, 911 (1974).Google Scholar