Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-15T06:12:47.475Z Has data issue: false hasContentIssue false

Molecular Dielectric Multilayers for Ultra-Low-Voltage Organic Thin Film Transistors

Published online by Cambridge University Press:  01 February 2011

Antonio Facchetti
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
Tobin J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
Get access

Abstract

Very thin (2.3 – 5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor (OTFT) structures to achieve sub-1 V operating characteristics. These new dielectrics are fabricated via layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well-defined, strongly-adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (400-700 nFcm-2). These multilayers enable OTFT function at very low source-drain, gate, and threshold voltages, and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] (a) Rogers, J. A., Bao, Z., Katz, H. E., Dodabalapur, A. in Thin-Film Transistors, Kagan, C. R., Andry, P., Eds. (Marcel Dekker, Inc., New York, 2003), pp. 377425.Google Scholar
(b) Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mater. 14, 99 (2002).Google Scholar
(c) Sirringhaus, H. et al., Nature Mat. 2, 641 (2003).Google Scholar
[2] (a) Dimitrakopolous, C. D., Purushothaman, S., Kymissis, J., Callegari, A., Shaw, J. M., Science 283, 822 (1999).Google Scholar
(b) Tate, J. et al., Langmuir 16, 6054 (2000).Google Scholar
(c) Wang, G., et al., J. Appl. Phys. 95, 316 (2004).Google Scholar
[3] (a) Collet, J., Tharaud, O., Chapoton, A., Vuillaume, D., App. Phys. Lett. 76, 1941 (2000).Google Scholar
(b) Halik, M. et al., Nature 431, 963 (2004).Google Scholar
[4] (a) Yoon, M. H., DiBenedetto, S. A., Facchetti, A., Marks, T. J., J. Am. Chem. Soc. 127, 1348 (2005).Google Scholar
(b) Zhu, P. et al., Chem. Mater. 14, 4982 (2002).Google Scholar
[5] Malinsky, J. E. et al., Chem. Mater. 14, 3054 (2002).Google Scholar
[6] Boulas, C., Davidovits, J. V., Rondelez, F., Vuillaume, D., Phys. Rev. Lett. 76, 4797 (1996).Google Scholar
[7] Chua, L.-L., Ho, P. K. H., Sirringhaus, H., Friend, R. H., Appl. Phys. Lett. 84, 3400 (2004), and references therein.Google Scholar
[8] Nicollian, E. H., Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (Willey, New York, 1982).Google Scholar
[9] Gelinck, G. H. et al., Nature Mater. 3, 106 (2004).Google Scholar