Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:33:44.997Z Has data issue: false hasContentIssue false

Molecular Second-Order Optical Nonlinearity of Push-Pull Bisdithiolene Nickel Complexes

Published online by Cambridge University Press:  10 February 2011

Chin-Ti Chen
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Sish-Yuan Liao
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Kuan-Jiuh Lin
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Long-Li Lai
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Get access

Abstract

The synthesis and characterization of donor-acceptor substituted unsymmetrical bisdithiolene nickel complexes are described for the first time. X-ray single crystal data indicate that the complexes exist with two types of bonding structures, namely, the π-localized and π-delocalized structures. The relation between bonding structures and the molecular second-order nonlinear optical properties, i.e., solvatochromism, dipole moment, and molecular first hyperpolarizability is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mueller-Westerhoff, U. T., Vance, B., and Yoon, D. I., Tetrahedron 47, 909 (1991).Google Scholar
2. Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A., and Underhill, A. E., Coord. Chem. Rev. 110, 115 (1991).Google Scholar
3. Miller, J. S., and Epstein, A. J., Angew. Chem. Int. Ed. Engl. 33, 385 (1994).Google Scholar
4. Giroud-Godquin, A. -M., and Maitlis, P. M., Angew. Chem. Int. Ed. Engl. 30, 375 (1994).Google Scholar
5. Hill, C. A. S., Charlton, A., Underhill, A. E., Oliver, S. N., Kershaw, S., Manning, R. J., and Ainslie, B. J., J. Mater. Chem. 4, 1233 (1994).Google Scholar
6. Cummings, S. D., Cheng, L. -T., and Eisenberg, R., Chem. Mater. 9, 195 (1997).Google Scholar
7. Vogler, A. and Kunkely, H., Angew. Chem. Int. Ed. Engl. 21, 77 (1982).Google Scholar
8. Miller, T. R. and Dance, I. G., J. Am. Chem. Soc. 95, 6970 (1973).Google Scholar
9. Davison, A. and Holm, R. H., Inorg. Synth. 10, 8 (1967).Google Scholar
10. Schrauzer, G. N., Mayweg, V. P., J. Am. Chem. Soc. 87, 1483 (1965).Google Scholar
11. Mueller-Westerhoff, U. T., Zhou, M., J. Org. Chem. 59, 4988 (1994).Google Scholar
12. Thami, T., Bassoul, P., Petit, M. A., Simon, J., Fort, A., Barzoukas, M., Villaeys, A., J. Am. Chem. Soc. 114, 915 (1992).Google Scholar
13. Kott, K. L., Whitaker, C. M., McMahon, R. J., Chem. Mater. 7, 426 (1995).Google Scholar
14. Paley, M. S., Harris, J. M., Looser, H., Baumert, J. C., Bjorklund, G. C, Jundt, D., Tweig, R. J., J. Org. Chem. 54, 3774 (1988).Google Scholar
15. Bosshard, Ch., Knopfle, G., Pretre, P., Gunter, P., J. Appl. Phys. 71, 1594 (1992).Google Scholar
16. X-ray single crystal data of 1: Monoclinic, space group C 2/c, a = 25.124(4), b = 6.925(2), c = 16.424(4) Å, β = 92.30(2)°, V = 2855(1)° Å3 ρ = 1.109 gcm−3, Z = 8, R = 0.087, wR(F 2) = 0.238 (146 variables); 4: Monoclinic, space group P 21/n, a = 7.048(2), b = 27.927(10), c = 17.880(5) Å, β = 93.09(3)°, V = 3514(2) Å3 ρ = 1.278 gcm−3, Z = 2, R = 0.069, wR(F 2) = 0.191 (370 variables); 6: Triclinic, space group P 1, a = 8.555(6), b = 11.834(5), c = 14.783(3) Å, α = 99.48(2)°, β= 94.38(4)°, γ = 107.05(4)°, V = 1390(1) Å3 ρ = 1.679 gcm−3 Z = 2, R = 0.041, wR(F 2) = 0.108 (370 variables).Google Scholar
17 Schmitt, R. D., Wing, R. M., Maki, A. H., J. Am. Chem. Soc. 91, 4393 (1969).Google Scholar
18. Herman, Z. S., Kirchner, R. F., Leow, G. H., Mueller-Westerhoff, U. T., Nazzal, A., Zerner, M. C., Inorg. Chem. 21, 46 (1982).Google Scholar
19. In dichloromethane, acetone, and dimethylsulfoxide, the absorption λmax of 3 is 812, 763, and 751 nm, respectively; λmax of 5 is 830, 798, and 779 nm, respectively; λmax of 6 is 845, 848, and 917 nm, respectively; λmax of 7 is 1161, 1168, and 1225 nm, respectively.Google Scholar
20. Oudar, J. L., Chemla, D. S., J. Chem. Phys. 66, 2664 (1977).Google Scholar
21 Oudar, J. L., J. Chem. Phys. 67, 446 (1977).Google Scholar
22. Kanis, D. R., Ratner, M. A., Marks, T. J., Chem. Rev. 94, 195 (1994).Google Scholar