Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-10-01T13:26:16.813Z Has data issue: false hasContentIssue false

Monitoring of the Surface Species on Silicon After Chemical Cleaning by FTIR Spectroscopy

Published online by Cambridge University Press:  15 February 2011

Chan-Hwa Chung
Affiliation:
Department of Chemical Engineering, Seoul National University, Seoul 151-742, Korea
Chang-Koo Kim
Affiliation:
Department of Chemical Engineering, Seoul National University, Seoul 151-742, Korea
Sang Heup Moon
Affiliation:
Department of Chemical Engineering, Seoul National University, Seoul 151-742, Korea
Get access

Abstract

For the analysis of as-cleaned surface, we have used a the unique IR method that uses a highsurface-area porous sample. We have observed by experiments that the oxide growth rate on silicon is reduced to a minimum when the surface is treated with a proper amount of HF vapor obtained from 1% I-IF solution. FTIR and XPS observations of the treated surface suggest that the oxide growth rate is closely related to the amount of the surface fluorides. In UV/O2 cleaning process, we have observed experimentally that addition of water vapor to cleaning gas stream enhances the cleaning efficiency by as much as 1.3 times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gambino, J.P., Monkowski, M.P., Shepard, J.F., and Parks, C.C., J. Electrochem. Soc. 137, 976 (1990).Google Scholar
2. Takahagi, T., Ishitani, A., Kuroda, H., and Nagasawa, Y., J. Appl. Phys. 69, 803 (1991).Google Scholar
3. Watanabe, S., Nakayama, N., and Ito, T., Appl. Phys. Lett. 59, 1458 (1991).Google Scholar
4. Chabal, Y.J., Higashi, G.S., and Raghavachari, K., J. Vac. Sci. Technol. A7, 2104 (1989).Google Scholar
5. Burkman, D., Peterson, C.A., Zazzera, L.A., and Kopp, R.J., Semiconductor Processing Microcontamination 6, 57 (1983).Google Scholar
6. Haring, R.A. and Liehr, M., J. Vac. Sci. Technol. A10, 802 (1992).Google Scholar
7. van der Heide, P.A.M., Hofmian, M.J. Baan, and Ronde, H.J., J. Vac. Sci. Technol. A7, 1719 (1989).Google Scholar
8. Nakamura, M., Takahagi, T., and Ishitani, A., Jpn. J. Appl. Phys. 32, 3125 (1993).Google Scholar
9. Helms, C.R. and Deal, B.E., J. Vac. Sci. Technol. A10, 806 (1992).Google Scholar
10. Ruzyllo, J., Duranko, G.T., and Hoff, A.M., J. Electrochem. Soc. 134, 2052 (1987).Google Scholar
11. Bomchil, G., Herino, R., Barla, K., and Pfister, J.C., J. Electrochem. Soc. 130, 1611 (1983).Google Scholar
12. Chabal, Y.J. and Raghavachari, K., Phys. Rev. Lett. 54, 1055 (1985).Google Scholar
13. Pai, P. G., Chao, S. S., Takagi, Y., and Lucovsky, G., J. Vac. Sci. Technol. A4, 689 (1986).Google Scholar
14. Itoga, T., Hiraoka, A., Yano, F., Yugami, J., and Ohkura, M., in Extended Abstracts of the 1994 International Conference on Solid State Devices and Materials, (Jpn. Soc. Appl. Phys., Yokohama, Japan, 1994), pp. 667669.Google Scholar
15. Sunada, T., Yasaka, T., Takakura, M., Sugiyama, T., Miyazaki, S., and Hirose, M., Jpn. J. Appl. Phys. 29, L2408 (1990).Google Scholar
16. Higashi, G.S., Chabal, Y.J., Raghavachari, K., Becker, R.S., Green, M.P., Hanson, K., Boone, T., Eisenberg, J.H., Shive, S.F., DiBello, G.N., and Fulford, K.L., in Proc. of the 4th International Symposium on ULSI Science and Technology, edited by Celler, G.K., Middlesworth, E., and Hoh, K. (Electrochem. Soc. Proc. 93–13, Pennington, NJ, 1993) pp. 189198.Google Scholar
17. Helms, C.R., J. Vac. Sci. Technol. 16, 608 (1979).Google Scholar