Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T02:25:22.217Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Transient Currents in a-Si:H

Published online by Cambridge University Press:  10 February 2011

Wen Chao Chen
Affiliation:
Groupe de recherche en physique et technologie des couches minces (GCM) Université de Montréal, PO Box 6128 Donwtown Station, Montréal (QC), Canada, H3C 3J7chen@lps.umontreal.ca, hamel@lps.umontreal.ca
Louis-André hamel
Affiliation:
Groupe de recherche en physique et technologie des couches minces (GCM) Université de Montréal, PO Box 6128 Donwtown Station, Montréal (QC), Canada, H3C 3J7chen@lps.umontreal.ca, hamel@lps.umontreal.ca
Get access

Abstract

Multi-trapping transient currents through pure exponential band tails are calculated by Monte Carlo simulations of unprecedented accuracy. The time and energy dependent carrier distributions, the current and the charge signals are obtained. The transit time tT and the dispersion parameters α1, and α2, before and after the transit time, are extracted from the simulated currents. Results are presented for the expected temperature dependence of α1 and α2 and of the drift mobility μD for electrons and holes in a-Si:H. At low temperature, α1 = α2 = T/To is found, but above T ≈ 0.6To, α1, bends downwards to saturate at 1 at high temperature while α2 bends upwards, clearly improving the agreement with the experimental data. The temperature dependence of the drift mobility μD is well reproduced for holes with a microscopic mobility of μo = 0.5 cm2V−1s−1. For electrons, the agreement is also excellent but the surprisingly low value of μo = 4 cm2V−1s−1 is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiedje, T., in Semiconductors and Semimetals, edited by J., Pankove (Academic Press, New York, 1984) Vol.21C, p.207.Google Scholar
2. Tiedje, T., in Physics of Hydrogenated Amorphous Silicon, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer, New York, 1984), Vol.2, p. 261.Google Scholar
3. Chen, W. C., Hamel, L. A., Can. J. Phys. 73, 585 (1995).Google Scholar
4. Hamel, L. A., Chen, W. C., IEEE Trans. on Nuclear Science 42, 235 (1995).Google Scholar
5. Tiedje, T., Rose, A., Solid State Commun. 37, 49 (1980).Google Scholar
6. Orenstein, J., Kastner, M., Phys. Rev. Lett. 46, 1421 (1981).Google Scholar
7. Nebel, C. E., Bauer, G. H., Phil. Mag. B 59, 463 (1989).Google Scholar
8. Marshall, J. M., Michiel, H., Adriaenssens, G. J., Phil. Mag. B 47, 211 (1983).Google Scholar
9. Marshall, J. M., Allan, D., Phil. Mag. B 40, 71 (1979).Google Scholar
10. Chen, W. C., Hamel, L. A., Yelon, A., to be published.Google Scholar
11. Branz, H. M., Yelon, A., Movaghar, B., Mat. Res. Soc. Symp. Proc. 336, 159 (1994).Google Scholar