Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-06T11:24:39.905Z Has data issue: false hasContentIssue false

Morphology of Diamond Films Produced by ECR-PACVD

Published online by Cambridge University Press:  25 February 2011

S. Jin
Affiliation:
Department of Physics, Computer and Systems Engineering Boston University, Boston, MA 02215
T. D. Moustakas
Affiliation:
Department of Physics, Computer and Systems Engineering Boston University, Boston, MA 02215 Department of Electrical, Computer and Systems Engineering Boston University, Boston, MA 02215
Get access

Abstract

Diamond films were produced at a relatively low pressures (<1 Torr) by the ECR-PACVD method of gas mixtures containing CO (5%), H2 (95%) and traces of oxygen at substrate temperatures from ambient (no intentional heating) to 1050°C. Faceted surface morphologies were observed even at the lowest temperature of growth. The microstructure is dominated by octahedral crystals below 600°C, by cubic crystals at 800–900°C, and by multiply twined (111) crystals at temperatures higher than 950°C. The weak temperature dependence of the growth rate is consistent with hydrogen abstraction from the growing surface being the rate controlling step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsumoto, S., Sato, Y., Tsutusmi, M. and Setaka, N., J. Mater. Sci. 17, 3106 (1982).Google Scholar
2. Moustakas, T. D., Solid State Ionics 32/33, 861 (1989).Google Scholar
3. Kamo, M., Sato, Y., Matsumoto, S. and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
4. Suzuki, K., Sawabe, A., Yasuda, Y. and Inuzuka, T., Appl. Phys. Lett. 50, 728 (1987).Google Scholar
5. Matsumoto, S., J. Mater. Sci. Lett. 4, 600 (1985).Google Scholar
6. Akatsuka, F., Hirose, Y. and Komaki, K., Jpn. J. Appl. Phys. Lett. 27, L1600 (1988).CrossRefGoogle Scholar
7. Kawarada, H., Mar, K. S. and Hiraki, A., Jpn. J. Appl. Phys. 26, L1032 (1987).Google Scholar
8. Nunotani, M., Komori, M., Yamasawa, M., Fujiwara, Y., Sakuta, K., Kobayashi, T., Nakashima, S., Minomo, S., Taniguchi, M., and Sugiyo, M., Jpn. J. Appl. Phys. 30, L1199 (1991).Google Scholar
9. Jin, S., Fanciulli, M., Jong, D., He, Y., and Moustakas, T. D., SPIE Proc. 1759 (1992), in press.Google Scholar
10. Wei, J., Kawarada, H., Suzuki, J., and Hiraki, A., Jpn. J. Appl. Phys. 29, L1483 (1990).CrossRefGoogle Scholar
11. Jin, S. and Moustakas, T. D., to be published.Google Scholar
12. Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).Google Scholar
13. Badzian, A. R., in Advances in X-ray Analysis, Edited by Barrett, C. S., Gilfrich, J. V., Jenkins, R., Russ, J. C., Richardson, J. W. and Predeck, P. K. (Plenum, New York 1988) Vol. 31, p.113.CrossRefGoogle Scholar
14. Spear, K. E., J. Am. Ceram. Soc. 72, 171(1989).Google Scholar
15. Kim, J. S., Kim, M. H., Park, S. S., and Lee, J. Y., J. Appl. Phys. 67, 3354(1990).Google Scholar
16. Spitsyn, B. V., J. Crys. Growth 99, 1162 (1990).Google Scholar
17. Kondoh, E., Mitomo, T., and Ohtsuka, K., Appl. Phys. Lett. 59, 488 (1991).CrossRefGoogle Scholar
18. Jin, S., Molnar, R., Jong, D., and Moustakas, T. D., SPIE Proc. 1759 (1992), in press.Google Scholar
19. Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).Google Scholar
20. Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
21. Tsang, W. and Hampson, R. F., Phys, J.. Chem. Ref. Data 15, 1087 (1986).Google Scholar