Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T20:21:10.731Z Has data issue: false hasContentIssue false

Nanometer Lithography by Fast Atom or Ion Beam Milling

Published online by Cambridge University Press:  25 February 2011

G. Devaud
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80309
J. Fleming
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80309
K. Douglas
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80309
Get access

Abstract

We have produced nanometer scale patterning (nanostructures) by metal shadowing of two-dimensional protein crystals (S-layers), followed by milling with ions or fast atoms. In this parallel process, the metal overlayer is formed into a metal screen consisting of hexagonal arrays of 10 nm size holes with a 20 nm periodicity. We have studied the time evolution of the milling process, and temperature effects. Nanostructure formation may be due to preferential sputtering of the troughs relative to the crests of the metallized S-layer. The effect of temperature on pattern formation indicates that thermal diffusion is also important.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Capasso, Federico, Physics Today 43 22(1990).Google Scholar
2 Meingailis, J., J. Vac. Sci. Technol. B 5, 469(1987), H.I. Smith, H.G. Craighead, Physics Today 41 24(1990).Google Scholar
3 Howard, R.E., Skocpol, W.J., Jackel, L.D., Ann. Rev. Mater. Sci. 16, 441(1986).CrossRefGoogle Scholar
4 Chu, W., Smith, H.I., Schattenburg, M.L., Appl. Phys. Lett. 59 1641(1991).CrossRefGoogle Scholar
5 Eigler, D.M., Lutz, C.P., Rudge, W.E., Nature 352, 600(1991).Google Scholar
6 Douglas, K., Clark, N.A., Rothschild, K.J., “Appl. Phys. Lett. 48, 676(1986).Google Scholar
7 Michel, H., Neugebauer, D.-Ch. and Oesterhelt, D., in Electron Microscopy at Molecular Dimensions, edited by Baumeister, E. and Vogell, W. (Springer-Verlag, New York, 1980), p. 27.CrossRefGoogle Scholar
8 Lundquist, Ted, Gatan, Inc. (private communication).Google Scholar
9 Taylor, K.A., Deatherage, J.F., Amos, L.A., Nature 299 840(1982).Google Scholar
10 Devaud, G., Furcinitti, P., Fleming, J., Lyon, M.K., Douglas, K.,“Direct observation of defect structure in protein crystals by atomic force microscopy”, submitted to J. Biophys., 1991.CrossRefGoogle Scholar
11 Devaud, G., Douglas, K., Lyon, M.K., “The origin and control of fluctuations in nanostructure formation”, to be submitted to J. Vac. Sci. Techn B., 1991.Google Scholar
12 Mattox, D.M., J. Vac. Sci. Technol. A 7(3) 1105(1989).Google Scholar
13 Anderson, H.H. and Bay, H.L., in Sputtering by Particle Bombardment, edited by. Behrisch, R. (Springer-Verlag, New York, 1981), p. 145. 14H. Oechsner, Appl Phys. 8, 185(1975).Google Scholar
15 Bradley, R. Mark and Harper, J.M.E., J.Vac. Sci, Tech. A 6, 2390(1988). R. Mark Bradley, in Handbook of Ion Beam Technology, edited by J.J. Cuomo, S.M. Rossnagel and H.R. Kaufman (Noyes Publication, NJ, 1989), p. 300.CrossRefGoogle Scholar
16 Moreno-Marin, J.C., Valles-Abarca, J.A. Gras-Marti, A., J. Vac. Sci. Technol. B. 4, 322(1986).CrossRefGoogle Scholar
17 Johnson, L.F., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, Vol 1 in Beam Modification of Materials, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), ch.9.Google Scholar