Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-31T16:24:38.871Z Has data issue: false hasContentIssue false

Nanometer-Sized Microstructures

Published online by Cambridge University Press:  28 February 2011

H. Gleiter*
Affiliation:
Universität des Saarlandes und Institut fur Neue Materialien, Gebäude 43, W-6600 Saarbrücken, Germany
Get access

Abstract

Materials with nanometer-sized microstructures are solids that contain such a high density of defects (point defects, dislocations, grain boundaries, interphase boundaries etc.) that the volume fraction of the defect cores becomes comparable to the residual, defect free volume. Since 1970, the interest of materials scientists focused on solids with nanometer-sized microstructures when it was recognized that specifically tailored nanometer-sized microstructures permit the generation of materials with new atomic and/or electronics structures. In the area of semiconductors, quantum well structures and superlattices consisting of thin coherent layers with different dopings or compositions have been studied extensively. In these structures quantum size effects prevail because the coherent boundaries structures between the layers act as electron confinements. Research activities aiming towards the synthesis of new atomic (and electronic) structures in metals, ceramics and semiconductors by means of three-dimensional nanometer-sized micro-structure were initiated by the proposal, to generate solids a large volume fraction of which consists of the cores of defects such as incoherent grain and/or interphase boundaries, such solids differ structurally and property-wise from crystals and glasses with the same chemical composition because the atomic arrangements formed in the cores of incoherent grain or interphase boundaries deviate from crystalline or glassy structures. Recent studies of nanometer-sized materials by x-ray/neutron diffraction, EXAFS, different spectroscopies as well as property measurements support this idea. The properties of materials with nanometer-sized microstructures are discussed on the basis of the knowledge available from the numerous studies that have been carried out in the last two decades about the structure and properties of grain and/or interphase boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feynman, R.P., There’s plenty of room at the bottom, in: Gilbert, H.D. (ed.), Miniaturization, Reinhold, New York, p. 282 (1961).Google Scholar
2. Esaki, L. und Tsu, R., IBM Research Note RC-2418 (1969).Google Scholar
3. Esaki, L. und Tsu, R., IBM J. Res. Develop. 14, 61 (1970).Google Scholar
4. Mendez, E.E. and Klitzing, K.v., Physics and Applications of Quantum Wells and Superlattices, Plenum Press, N.Y. (1988).Google Scholar
5. Gleiter, H. in: Second Risø Internat. Symposium on Metallurgy and Materials Science, Hansen, N., Horse-well, A., Leffers, T. and Lilholt, H. (eds.) Risø Nat. Laboratory Roskilde, Denmark, p. 15 (1981).Google Scholar
6. Merkle, K.L., Reddy, J.F., Wiley, C.L. and Smith, D.J., Phys. Rev. Lett. 59, 2887 (1987).Google Scholar
7. Smith, D.A., Journal de Physique 49, C563 (1988).Google Scholar
8. Fitzsimmons, M.R., Burkel, E. and Peisl, J., Verhandl. d. Dtsch. Physikal. Gesellsch. (VI) 25, 625-DS 8.4 (1990).Google Scholar
9. Jorra, E., Franz, H., Preisl, J., Wallner, G., Petry, W., Birringer, R., Gleiter, H. and Haubold, T., Philos.Mag. B 60, 159 (1989).Google Scholar
10. Epperson, J.E., Siegel, R.W., White, J.W., Klippert, T.E., Narayanasamy, A., Eastman, J.A. and Trouw, F., Mat. Res. Soc. Symp. Proc. 132, 15 (1989).Google Scholar
11. Herr, U., Jing, J., Birringer, R., Gonsor, U. and Gleiter, H., Appl. Phys. Letters 50, 472 (1987).CrossRefGoogle Scholar
12 Haubold, T., Birringer, R., Lengeler, B. and Gleiter, G., Phys. Lett. 135, 461 (1989).Google Scholar
13. Riviere, J.P., Boulland, P. and Dinhut, J.F., Radiation Effects and Defects in Solids (in press).Google Scholar
14. Ramasamy, S., Jiang, J., Birringer, R., Gonser, U. and Gleiter, H., Solid State Comm. 74, 851 (1990).Google Scholar
15. Fitzsimmons, M.R. and Sass, S.L., Journal de Physique 49, C 571 (1988).Google Scholar
16. Zhu, X., Birringer, R., Herr, U. and Gleiter, H., Phys. Rev. B 35, 9085 (1987).Google Scholar
17. Rupp, J. and Birringer, R., Phys. Rev. B36, 7888 (1987).CrossRefGoogle Scholar
18. Horvath, J., Birringer, R. and Gleiter, H., Solid State Comm. 62, 391 (1987).Google Scholar
19. Mütschele, T. and Kirchheim, R., Scripta Metall. 21, 1101 (1987).CrossRefGoogle Scholar
20. Schumacher, S., Birringer, R., Strauss, R. and Gleiter, H., Acta Metall. 37, 2485 (1989).Google Scholar
21. Birringer, R. and Karch, J., Ceram. Int. (in press).Google Scholar
22. Hahn, H., Logas, J., Hoefler, H.J. and Averback, R.S., Mat. Res. Soc. Symp. (in press).Google Scholar
23. Ishida, Y., Ichonose, H. and Takahashi, T., Journal de Physique 49, C5183 (1988).Google Scholar
24. Cahn, J.W., and Larche, F.C., Acta Metall. 32, 1915 (1984).Google Scholar
25. Johnson, W.C. and Alexander, J.I.D., J. Appl. Phys. 59, 2735 (1986).Google Scholar
26. Herr, U., Jing, J., Gonser, U. and Gleiter, H., Solid State Comm. 76, 197 (1990).Google Scholar
27. Böttcher, H., Schreiber, K. and Vaupel, B., phys. stat. sol. (a) 117, K 165 (1990).Google Scholar
28. Yoshizawa, Y., Yamauchi, K. and Oguma, S., European Patent 0 271 657A2, 22.06.1988.Google Scholar
29. Jing, H., Krämer, A., Birringer, R., Gleiter, H. and Gonser, U., J. of Non-Crystalline Solids 113, 167 (1989).CrossRefGoogle Scholar
30. Weissmüller, J., Birringer, R. and Gleiter, H., Phys. Lett. A 145, 130 (1990).Google Scholar
31. Maier, J., Prill, S. and Reicher, B., Solid State Ionics 35, 1465 (1988).Google Scholar
32. Maier, J., phys. stat. sol. (a) 112, 115 (1989).Google Scholar
33. Maier, J., Lauer, U. and Gopel, W., Solid State Ionics, in press.Google Scholar
34. Maier, J., Ber. Bunsenges, Phys. Chem. 93, 1474 (1989).CrossRefGoogle Scholar
35. Fecht, H.J., Hellstern, E., Ru, Z. and Johnson, W.L., Adv. Powder Metall 1 –3, 111 (1989).Google Scholar
36. Herzer, G. and Warlimont, H., Proc. Acta Metallurgica Conference on Materials with Ultrafine Microstructures Oct. 1–5, 1990; Atlantic City, to be published in Acta Metall.Google Scholar