Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T11:59:01.523Z Has data issue: false hasContentIssue false

Nanostructuring of Hybrid Silicas: New Approach to Bridged Silsesquioxanes with Purine-Pyrimidine Base Pairs as Bridging Units

Published online by Cambridge University Press:  17 March 2011

Michel Wong Chi Man
Affiliation:
Architectures Moléculaire et Matériaux Nanostructurés, ICG Montpellier (UMR 5253) UMIICNRS-ENSCM-UMI, 8 rue de l'école normale, Montpellier, 34296, France
Guilhem Arrachart
Affiliation:
Architectures Moléculaire et Matériaux Nanostructurés, ICG Montpellier (UMR 5253) UMIICNRS-ENSCM-UMI, 8 rue de l'école normale, Montpellier, 34296, France
Carole Carcel
Affiliation:
Architectures Moléculaire et Matériaux Nanostructurés, ICG Montpellier (UMR 5253) UMIICNRS-ENSCM-UMI, 8 rue de l'école normale, Montpellier, 34296, France
Joël J.E. Moreau
Affiliation:
Architectures Moléculaire et Matériaux Nanostructurés, ICG Montpellier (UMR 5253) UMIICNRS-ENSCM-UMI, 8 rue de l'école normale, Montpellier, 34296, France
Christian Bonhomme
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, Paris, 75005, France
Florence Babonneau
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, Paris, 75005, France
Gaëlle Creff
Affiliation:
Laboratoire des Colloïdes, Verres et Nanomatériaux, Place Eugène Bataillon, Montpellier, 34095, France
Jean-Louis Bantignies
Affiliation:
Laboratoire des Colloïdes, Verres et Nanomatériaux, Place Eugène Bataillon, Montpellier, 34095, France
Philippe Dieudonne
Affiliation:
Laboratoire des Colloïdes, Verres et Nanomatériaux, Place Eugène Bataillon, Montpellier, 34095, France
Bruno Alonso
Affiliation:
MACS, ICG Montpellier (UMR 5253) UMII-CNRS-ENSCM-UMI, 8 rue de l'école normale, Montpellier, 34296, France
Get access

Abstract

A new route to synthesize hybrid silica-based network with bridging organic units via molecular recognition is described. The hydrolysis of two monosilylated complementary base pairs, one bearing an adenine fragment and the other a thymine fragment leads to the formation of a powdered sample that has been characterized by Scanning Electron Microscopy (SEM), Powder X-ray Diffraction (PXRD) FTIR and solid state NMR (1H, 13C and 29Si). This last technique proved to be extremely powerful to directly demonstrate the occurrence of heteroassembly of the nucleobase-based silylated fragments, through the use of two-dimensional 1H double-quanta MAS-NMR that could probe spatial proximities between the thymine NH groups and the adenine NH2 groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shea, K.J., Loy, D.A. and Webster, O.W., J. Am. Chem. Soc. 114, 6700 (1992).Google Scholar
2. Corriu, R.J.P., Moreau, J.J.E., Thépot, P. and Man, M. Wong Chi, Chem. Mater. 4, 1217 (1992).Google Scholar
3. Shea, K.J., Moreau, J.J.E., Loy, D.A., Corriu, R.J.P., and Boury, B., in Functional Hybrid Materials (Eds. Gomez-Romero, P., Sanchez, C.), Wiley-VCH, 50 (2004).Google Scholar
4. Moreau, J.J.E., Pichon, B.P., Man, M. Wong Chi, Bied, C., Pritzkow, H., Bantignies, J-L., Dieudonné, P., Sauvajol, J-L., Angewandte Chemie Int. Ed. 43, 203206 (2004).Google Scholar
5. Moreau, J.J.E., Vellutini, L., Man, M. Wong Chi, Bied, C., Chem. Eur. J. 9, 159, (2003).Google Scholar
6. Saenger, W., in Principles of Nucleic Acid Structure;Springer: Berlin, (1984)Google Scholar
7.a) Brienne, M. J., Gabard, J., Lehn, J-M., Stibor, I., J. Chem. Soc., Chem. Commun., 1868 (1989).Google Scholar
b) Fouquey, C., Lehn, J-M., Levelut, A-M., Adv. Mater, 2, 254 (1990).Google Scholar
8. Thibon, J., Latxaque, L., Déleris, G., J. Org. Chem. 62, 4635 (1997).Google Scholar
9. Latxaque, L., Thibon, J., Guillot, C., Moreau, S., Déleris, G., J. Org. Chem., 62, 4635 (1997).Google Scholar
10. Moreau, J.J.E., Pichon, B.P., Arrachart, G., Man, M. Wong Chi, Bied, C., New J. Chem., 29, 653 (2005).Google Scholar
11. Schnell, I., Spiess, H.W., J. Magn. Reson. 151, 153 (2001).Google Scholar
12. Cho, Y. L., Jeong, K-S,. Tetrahedron Letters. 38, 8337 (1997).Google Scholar
13.a) Jeong, K-S., Tjivikua, T., Muehldorf, A. V., Deslongchamps, G., Famulok, M., Rebek, J., J. Am. Chem. Soc. 113, 201 (1991).Google Scholar
b) Jeong, K-S., Tjivikua, T., Rebek, J., J. Am. Chem. Soc. 112, 3215 (1990).Google Scholar
14. Lehn, J.-M., Mascal, M., Decian, A., Fischer, J., J. Chem. Soc., Chem. Commun. 479 (1990).Google Scholar
15. Shimizu, T., Iwaura, R., Masuda, M., Hanada, T., Yase, K., J. Am. Chem. Soc. 123, 5947 (2001)Google Scholar
16. Kyougoku, Y., Lord, R. C., Rich, A., J. Am. Chem. Soc. 89, 496 (1967).Google Scholar
17. Feike, M., Demco, D.E., Graf, R., Gottwald, J., Hafner, S., Spiess, H.W., J. Magn. Res. A 122, 214 (1996).Google Scholar