Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T15:54:24.435Z Has data issue: false hasContentIssue false

Nanotribology of Diamond Films Studied by Atomic Force Microscopy

Published online by Cambridge University Press:  16 February 2011

Gabi Neubauer
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, CA, 95120-6099.
Sidney R. Cohen
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, CA, 95120-6099.
Gary M. Mcclelland
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, CA, 95120-6099.
Hajime Seki
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, CA, 95120-6099.
Get access

Abstract

An atomic force microscope, operated in ultra-high vacuum has been employed to study the tribological properties of diamond films under small loads (< 10−6 N) on a nanometer scale. The incidence of intermittent motion, “stick-slip”, while sliding a diamond tip across the diamond film, is detected under certain experimental conditions and is discussed with respect to the difference between static and kinetic friction, sample topography and a varying sample condition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Field, J.E., (Editor), Properties of Diamond, Academic Press, London, 1979.Google Scholar
[2] Berman, R., (Editor), Physical Properties of Diamond, Clarendon Press, Oxford, 1965.Google Scholar
[3] Wong, M.S., Meilunas, R., Ong, T.P., Chang, R.P.H., Mat. Res. Soc. Symp. Proc. 140, 483 (1989).Google Scholar
[4] Wong, M.S., Meilunas, R., Ong, T.P., Chang, R.P.H., Appl. Phys. Lett. 54, 2006 (1989).Google Scholar
[5] Johanmir, S., Deckman, D.E., Ives, L.K., Feldman, A., Farabaugh, E., Wear 133, 73 (1989).Google Scholar
[6] Bowden, F.P., F.R.S., J.E. Young, Proc. Roy. Soc. A 208, 444 (1951).Google Scholar
[7] Bowden, F.P., Hanwell, F.R.S., A.E., Proc. Roy. Soc. A 295, 233 (1966).Google Scholar
[8] Bowden, F.P., F.R.S., C.A. Brookes, Proc. Roy. Soc. A 295, 244 (1966).Google Scholar
[9] Seal, M., Proc. Roy. Soc. A 248, 379 (1958).Google Scholar
[10] Seal, M., Phil. Mag. A 43, 587 (1981).Google Scholar
[11] Casey, M., Wilks, J., J. Phys. D Appl. Phys. 6, 1772 (1973).Google Scholar
[12] Samuels, B., Wilks, J., J. Mat. Sci. 23, 2846 (1988).Google Scholar
[13] Tabor, D., in ”The Properties of Diamond”, edited by Field, J.E., Academic Press, London, 1979.Google Scholar
[14] Enomoto, Y., Tabor, D., Proc. Roy. Soc. A 373, 405 (1981).Google Scholar
[15] Binnig, G., Quate, C.F., Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
[16] Cohen, S. R., Neubauer, G., McClelland, G. M., to appear in J. Vac. Sci. Tech. (July/August 1990).Google Scholar
[17] Neubauer, G., Cohen, S.R., McClelland, G.M., Horne, D., Mate, C.M., to appear in Rev. Sci. Instr. (1990).Google Scholar
[18] Angus, J.C., Hayman, C.C., Science 241, 915 (1988).Google Scholar
[19] Buck, M., Chuang, T.J., Kaufman, J.H., Seki, H., to be published in MRS Fall Meeting Symposium Proceedings 162, (1990).Google Scholar
[20] Pepper, S.V., J. Vac. Sci. Tech. 20, 643 (1982).Google Scholar
[21] Erlandsson, R., McClelland, G.M., Mate, C.M., Chiang, S., J. Vac. Sci. Tech. A 6, 266 (1988).Google Scholar
[22] Martin, Y., Williams, C.C., Wickramasinghe, H.K., J. Appl. Phys. 61, 4723 (1987).Google Scholar
[23] Bowden, F.P., Tabor, D., The Friction and Lubrication of Solids, Oxford University Press, New York, (1986).Google Scholar
[24] Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S., Phys. Rev. Lett. 59, 1942 (1987).Google Scholar
[25] Erlandsson, R., Hadziioannou, G., Mate, C.M., McClelland, G.M., Chiang, S., J. Chem. Phys. 89, 5190 (1988).Google Scholar