Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-16T06:19:04.113Z Has data issue: false hasContentIssue false

Narrow-Gap Nonlinear Optical Materials

Published online by Cambridge University Press:  21 February 2011

E. R. Youngdale
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
C. A. Hoffman
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
J. R. Meyer
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
F. J. Bartoli
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
J. W. Han
Affiliation:
North Carolina State University, Raleigh, NC
J. W. Cook Jr.
Affiliation:
North Carolina State University, Raleigh, NC
J. F. Schetzina
Affiliation:
North Carolina State University, Raleigh, NC
A. Martinez
Affiliation:
Naval Surface Weapons Center, Silver Spring, MD
Get access

Abstract

We report an experimental study of the nonlinear optical properties of HgTe-CdTe superlattices grown by MBE and Pb1−x,SnxSe grown by hot wall epitaxy. Nondegenerate four-wave mixing has been employed to measure third-order nonlinear susceptibilities at 10.6 µm as a function of temperature, laser intensity, and difference frequency. The nonlinearity is believed to be due to modulation of the free carrier temperature and density by the optical beams. The HgTe-CdTe results are compared to theoretical calculations based on free carrier contributions to the susceptibility, and the agreement with experiment is quite good. In 1-µm-thick Pb1−xSnxSe layers, multiple internal reflections of the light within the sample is found to enhance the nonlinear signal by an order of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wolff, P. A., Yuen, S. Y., Harris, K. A., JCook, r. J. W., and Schetzina, J. F.. Appl. Phys. Lett. 50, 1858, (1987).Google Scholar
2. Auyang, S. Y., Wolff, P. A., Harris, K. A. Jr., Cook, J. W., and Schetzina, J. F.. J. Vac. Sci. Technol. A. 6, 2693, (1988).Google Scholar
3. Youngdale, E. R., Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Chu, X., Faurie, J. P., Han, J. W., Cook, J. W. Jr., and Schetzina, J. F.. J. Vac. Sci. Technol. A. 7, 365, (1989).Google Scholar
4. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Han, J. W., Cook, J. W. Jr., Schetzina, J. F., and Schulman, J. N., Phys. Rev. B 39, 5208 (1989).Google Scholar
5. Wynne, J. J.. Phys. Rev. 178, 1295, (1969).Google Scholar
6. Shani, Y., Rosman, R., and Katzir, A.. IEEE Jour. Quantum Electronics. QE–21(1), 51, (1985).Google Scholar
7. Nimtz, G. and Schlicht, B.. Springer Tracts in Modern Physics. 98, 1, (1983).Google Scholar
8. Born, M. and Wolf, E., Principles of Optics, 2nd edition, (MacMillan, New York, 1964), Section 7.6.Google Scholar