Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T21:35:52.830Z Has data issue: false hasContentIssue false

Native Defects, Diffusion, Self-Compensation, and Boron Doping in Cubic Silicon Carbide

Published online by Cambridge University Press:  26 February 2011

C. Wang
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
J. Bemholc
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907
Get access

Abstract

We report the results of a comprehensive theoretical investigation of the effects of stoichiometry and boron doping on the properties of cubic SiC. Supercell calculations using ab initio pseudopotentials show that the lowest energy defect in Si-rich n-type and intrinsic SiC is the electrically inactive Sic antisite, while VC++ is the lowest energy defect in p-type SiC. The electrons released by the carbon vacancies compensate acceptor dopants and lead to strong self-compensation effects when doping occurs during the growth of crystal. In C-rich SiC the dominant defect for all Fermi level positions is the electrically inactive CSi antisite. In stoichiometric and Si-rich cubic SiC, the BC site is energetically preferred, while BC and BSi have similar incorporation energies in C-rich material. In heavily doped p-type SiC the diffusion of BC proceeds by the dissociative (Frank-Turnbull) mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, R. F., Sitar, Z., Williams, B.E., Kim, H.S., Palmour, J.W., Edmond, J.A., Ryu, J., Glass, J. T., and Carter, C.H. Jr, Mater. Sci. and Eng. in, 77 (1988).Google Scholar
2 Addamiano, A. and Sparague, J.A., Appl. Phys. Lett. 44, 525 (1984).Google Scholar
3. Liaw, P. and Davis, R.F., J. Electrochem. Soc.: Solid State Science and Technology 132, 642 (1985).Google Scholar
4 Kaneda, S., Sakamoto, Y., Mihara, T., and Tanaka, T., J. Cryst. Growth 1, 536 (1987).Google Scholar
5. Palmour, J.W., Kong, H.S., and Davis, R.F., J. Appl. Phys. 64, 2168 (1988).Google Scholar
6. More, K.L., Ryu, J., Carter, C.H. Jr, Bentley, J. and Davis, R.F., Cryst. Latt. Def. and Amorph. Mater. 12, 243 (1985).Google Scholar
7. Mokhov, E.N., Goncharov, E.E., and Ryabova, G.G., Sov. Phys. Semicond. 18, 27 (1984).Google Scholar
8. Woodbury, H.H. and Ludwig, G.W., Phys. Rev. 124, 1083 (1961).Google Scholar
9. Zubatov, A.G., Zaritskil, I.M., Lukin, S.N., Mokhov, E.N., and Stepanov, V.G., Sov. Phys. Solid State 21, 197 (1985); A.G. Zubatov, V.G. Stepanov, Yu. A. Vodakov, and E. N. Mokhov, Sov. Tech. Phys. Lett. 8, 120 (1982).Google Scholar
10. Wang, C., Bemholc, J., and Davis, R.F., Phys. Rev. B 38, 12752 (1988).Google Scholar
11. Bernholc, J., Antonelli, A., Sole, T. M. Del, Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 61, 2689 (1988).Google Scholar
12. Kim, H.J. and Davis, R.F., J. Electrochem. Soc.: Solid State Science and Technology 1 2250 (1986).Google Scholar
13. Hon, M.H. and Davis, R.F., J. Mater. Sci. 14, 2411 (1979).Google Scholar
14. Hong, J. D. and Davis, R.F., L. Am. Ceram. Soc. 6, 546 (1980).Google Scholar
15. Bimie, D.P., III, J. Am. Ceram. Soc. 60, C33 (1986).Google Scholar
16. Yamanaka, M., Daimon, H., Sakuma, E., Misawa, S., and Yoshida, S., J. Appl. Phys. a, 599 (1986).Google Scholar
17. Bumgarner, J.W., Kong, H.S., Kim, H,J., Palmour, J.W., Edmond, J. A., Glass, J.T. and Davis, R.F., Proc. 38th Electronics Component Conf. (IEEE, New York 1988), p. 342.Google Scholar
18. Hagen, S.H. and Van Kemenade, A.W.C., Phys. Stat. Sol. (a) 33, 97 (1976).Google Scholar
19. Vodakov, Y.A., Lomakina, G.A., Mokhov, E.N. and Oding, V.G., Sov. Phys. Semicond. 14, 222 (1980).Google Scholar
20. Hong, J.D. and Davis, R.F., J. Mater. Sci. 15, 2458 (1981).Google Scholar
21. Hon, M.H., Davis, R.F., and Newbury, D. E., J. Mater. Sci. 15, 2073 (1980)Google Scholar
22. Vodakov, Y.A. and Mokhov, E.N., in Silicon Carbide-1973, edited by Marshall, R.C., Faust, J.W. Jr, and Ryan, C.E. (University of South Carolina Press, South Carolina, 1974) p. 508.Google Scholar
23. Frank, F.C. and Turnbull, D., Phys. Rev. 104. 617 (1956).Google Scholar
24. Pandey, K.C., Phys. Rev. Lett. 57, 2287 (1986).Google Scholar
25. Van Vechten, J.A., J. Phys. C: Solid State Phys. 57, L933 (1984).Google Scholar
26. This is necessary because the absolute position of an energy band is not well-defined in a periodic cell calculation. See Kleinman, L., Phys. Rev. B 24, 7412 (1981).Google Scholar
27. Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar