Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-08-01T20:27:36.939Z Has data issue: false hasContentIssue false

Nb-doped TiO2 films for transparent conductive electrodes with low resistivity deposited by dc magnetron sputtering using a TiO2-x–Nb2O5-x target

Published online by Cambridge University Press:  01 February 2011

Yasushi Sato
Affiliation:
ytsanno@hotmail.com, Aoyama Gakuin University, Graduate School of Science and Engineering, Sagamihara, Kanagawa, Japan
Yuta Sanno
Affiliation:
ytsanno@hotmail.com, Aoyama Gakuin University, Graduate School of Science and Engineering, Sagamihara, Kanagawa, Japan
Nobuto Oka
Affiliation:
oka@chem.aoyama.ac.jp, Aoyama Gakuin University, Graduate School of Science and Engineering, Sagamihara, Kanagawa, Japan
Toshihisa Kamiyama
Affiliation:
toshihisa-kamiyama@agc.co.jp, AGC Ceramics Co. Ltd., Takasago, Hyogo, Japan
Yuzo Shigesato
Affiliation:
yuzo@chem.aoyama.ac.jp, Aoyama Gakuin University, Graduate School of Science and Engineering, Sagamihara, Kanagawa, Japan
Get access

Abstract

Nb-doped anatase TiO2 films were deposited on unheated glass by dc magnetron sputtering using a slightly reduced TiO2-x–Nb2O5-x target with oxygen flow ratios [O2/(Ar+O2)] in the range from 0.00 to 0.20%. After post-annealing in a vacuum (6 × 10−4 Pa) at 500 and 600 °C for 1 h, the films were crystallized into the polycrystalline anatase TiO2 structure. The resistivity of the both films decreased to 6.3-6.8 × 10−4 Ω·cm with increasing [O2/(Ar+O2)] to 0.10%, where the carrier density and Hall mobility were 1.9-2.0 × 1021 cm−3 and 4.9-5.0 cm2·V−1·s−1, respectively. The films exhibited high transparency of over 60-70% in the visible region of light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T. and Hasegawa, T., Appl. Phys. Lett. 86, 252101 (2005).Google Scholar
2. Hitosugi, T., Ueda, A., Nakao, S., Yamada, N., Furubayashi, Y., Hirose, Y., Shimada, T., and Hasegawa, T., Appl. Phys. Lett. 90, 212106 (2007).Google Scholar
3. Gillispie, M. A., van Hest, M. F. A. M., Dabney, M. S., Perkins, J. D., and Ginley, D. S, J. Appl. Phys. 101, 033125 (2007).Google Scholar
4. Yamada, N., Hitosugi, T., Hoang, N. L. H., Furubayashi, Y., Hirose, Y., Konuma, S., Shimada, T., and Hasegawa, T., Thin Solid Films 516, 5754 (2008).Google Scholar
5. Ohsaki, H., Tachibana, Y., Hayashi, A., Mitsui, A., and Hayashi, Y., Thin Solid Films 351, 57 (1999).Google Scholar
6. Sato, Y., Uebayashi, A., Ito, N., Kamiyama, T., and Shigesato, Y., J. Vac. Sci. Technol. A 26, 903 (2008).Google Scholar
7. Sato, Y., Akizuki, H., Kamiyama, T., and Shigesato, Y., Thin Solid Films 516, 5758 (2008).Google Scholar
8. Yamagishi, M., Kuriki, S., Song, P. K., and Shigesato, Y., Thin Solid Films 442, 227 (2003).Google Scholar
9. Ohno, S., Takasawa, N., Sato, Y., Yoshikawa, M., Suzuki, K., Frach, P., and Shigesato, Y., Thin Solid Films 496, 126 (2006).Google Scholar
10. Kurita, D., Ohta, S., Sugiura, K., Ohta, H., and Koumoto, K., J. Appl. Phys. 100, 096105 (2006).Google Scholar
11. Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, 123 (1986).Google Scholar