Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T06:27:23.007Z Has data issue: false hasContentIssue false

Neutron Spectroscopy of Carbon nano-Materials

Published online by Cambridge University Press:  01 February 2011

Alexander I. Kolesnikov
Affiliation:
Argonne National Laboratory, Intense Pulsed Neutron Source Division, 9700 South Cass Avenue, Argonne, IL 60439
Chun-K. Loong
Affiliation:
Argonne National Laboratory, Intense Pulsed Neutron Source Division, 9700 South Cass Avenue, Argonne, IL 60439
Alexander P. Moravsky
Affiliation:
MER Corporation, 7960 South Kolb Road, Tucson, AZ 85706, USA
Raouf O. Loutfy
Affiliation:
MER Corporation, 7960 South Kolb Road, Tucson, AZ 85706, USA
Christian J. Burnham
Affiliation:
Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, 84112–0850, USA.
Get access

Abstract

Vibrational spectra for single wall carbon nanotubes, double wall carbon nanotubes, single wall carbon nanohorns and C60-peapods have been measured with inelastic neutron scattering in a wide range of energy transfer, 5–220 meV. A decrease in intensity around 75–100 meV and the appearance of two peaks around 120–125 meV and 150 meV in the double wall nanotubes and C60-peapods spectra compared to single wall carbon nanotubes and nanohorns were observed. These findings indicate the possibility of strong interaction between the walls of the double wall carbon nanotube, and between C60 molecules and carbon nanotube of the peapod. Alternatively, a possible contamination of the samples by hydrogen (even in microscopic quantities) covalently bonded to the carbon also can account for the observed phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pintschovius, L., Rep. Prog. Phys. 57, 473 (1996).Google Scholar
2. Rols, S. et al., Phys. Rev. Lett. 85, 5222 (2000).Google Scholar
3. Sauvajol, J.-L. et al., Carbon 40, 1697 (2002).Google Scholar
4. Chiang, I. W. et al., J. Phys. Chem. B105, 8297 (2001).Google Scholar
5. Costa, P. M. F. J. et al., Carbon 42, 2527 (2004).Google Scholar
6. Smith, B. W. and Luzzi, D. E., Chem. Phys. Lett. 321, 169 (2000).Google Scholar
7. Kolesnikov, A. I. et al., Phys. Rev. Lett. 93, 035503 (2004).Google Scholar
8. Abe, M. et al., Phys. Rev. B68, 041405 (2003).Google Scholar
9. Kolesnikov, A. I. et al., J. Phys.: Condens. Matter 8, 10939 (1996).Google Scholar
10. Walters, J. K. et al., J. Phys.: Condens. Matter 7, 10059 (1995).Google Scholar
11. Lasjaunias, J. C. et al., Phys. Rev. B65, 113409 (2002).Google Scholar
12. Popov, V. N., Materials Science and Engineering R43, 61102 (2004).Google Scholar
13. Reich, S., Thomsen, C. and Maultzsch, J., “Carbon Nanotubes,” Basic Concepts and Physical Properties (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004) pp. 1215.Google Scholar
14. Popov, V. N., Carbon 42, 991 (2004).Google Scholar
15. Ye, L. H. et al., Phys. Rev. B69, 235409 (2004).Google Scholar
16. Ding, J. W. et al., Phys. Rev. B66, 073401 (2002).Google Scholar
17. Papanek, P. et al., J. Phys.: Condens. Matter 13, 8287 (2001).Google Scholar
18. Bashkin, I. O. et al., unpublished.Google Scholar