Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T21:28:21.255Z Has data issue: false hasContentIssue false

Neutron Spectroscopy of Superconducting Fullerides

Published online by Cambridge University Press:  25 February 2011

Kosmas Prassides
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK
Christos Christides
Affiliation:
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK
John Tomkinson
Affiliation:
Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 0QX, UK
Matthew J. Rosseinsky
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. W. Murphy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Robert C. Haddon
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The phonon spectra of pristine fullerene, superconducting K3C60 and saturation-doped Rb6C60 measured by inelastic neutron scatteringin the energy range 2.5 - 200 meV at low temperatures reveal substantial broadening of five-fold degenerate Hg intramolecular vibrational modes both in the low-energy radial and the high-energy tangential part of the spectrum. This provides strong evidence for a traditional phonon-mediated mechanism of superconductivity in the fullerides but with an electron-phonon coupling strength distributed over a wide range of energies (33-195 meV) as a result of the finite curvature of the fullerene spherical cage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318, 162 (1985).Google Scholar
2. David, W.I.F., Ibberson, R.M., Matthewman, J.C., Prassides, K., Dennis, T.J.S., Hare, J.P., Kroto, H.W., Taylor, R., and Walton, D.R.M., Nature 353, 147 (1991); W.I.F. David, R.M. Ibberson, T.J.S. Dennis, J.P. Hare, and K. Prassides, Europhys. Lett. 18, 225 (1992).Google Scholar
3. Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P., and Kortan, A.R., Nature 350, 660 (1991).Google Scholar
4. Copley, J.R.D., Neumann, D.A., Cappelletti, R.L., and Kamitakahara, W.A., J. Phys. Chem. Solids, in press.Google Scholar
5. Prassides, K., Kroto, H.W., Taylor, R., Walton, D.R.M., David, W.I.F., Tomkinson, J., Rosseinsky, M.J., Murphy, D.W., and Haddon, R.C., Carbon, in press.Google Scholar
6. Prassides, K., Dennis, T.J.S., Hare, J.P., Tomkinson, J., Kroto, H.W., Taylor, R., and Walton, D.R.M., Chem. Phys. Lett. 187, 455 (1991).Google Scholar
7. Prassides, K., Tomkinson, J., Christides, C., Rosseinsky, M.J., Murphy, D.W., and Haddon, R.C., Nature 354, 462 (1991).Google Scholar
8. Prassides, K., Christides, C., Rosseinsky, M.J., Tomkinson, J., Murphy, D.W., and Haddon, R.C., Europhys. Lett, submitted.Google Scholar
9. Cappelletti, R.L., Copley, J.R.D., Kamitakahara, W.A., Li, F., Lannin, J.S., and Ramage, D., Phys. Rev. Lett. 66, 3261 (1991).Google Scholar
10. Coulombeau, C., Jobic, H., Bernier, P., Fabre, C., Schiltz, D., and Rassat, A., J. Phys. Chem. 96, 22 (1992).Google Scholar
11. Negri, F., Orlandi, G., and Zerbetto, F., Chem. Phys. Lett. 144, 31 (1988); Chem. Phys. Lett. 190, 174 (1992).Google Scholar
12. Schluter, M.A., Lannoo, M., Needels, M., Baraff, G.A., and Tomanek, D., Phys. Rev. Lett. 68, 526 (1992) and unpublished work.Google Scholar
13. Varma, C.M., Zaanen, J., and Raghavachari, K., Science 254, 989 (1991).Google Scholar
14. Mitch, M.G., Chase, S.J., and Lannin, J.S., Phys. Rev. Lett. 68, 883 (1992).Google Scholar
15. Zhou, P., Wang, K.A., Rao, A.M., Eklund, P.C., Dresselhaus, G., and Dresselhaus, M.S., unpublished.Google Scholar
16. Ramirez, A.P. et al. , Phys. Rev. Lett. 68, 1058 (1992); C.C. Chen and C.M. Lieber, J. Am. Chem. Soc. in press.Google Scholar