Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-28T18:18:57.805Z Has data issue: false hasContentIssue false

New Class of Microporous Materials: Porous Metal Phosphonate Thin Films

Published online by Cambridge University Press:  10 February 2011

Lori A. Vermeulen
Affiliation:
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, vermeulen@chem.siu.edu
J. Pattanayak
Affiliation:
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, vermeulen@chem.siu.edu
Travis Fisher
Affiliation:
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, vermeulen@chem.siu.edu
Monica Hansford
Affiliation:
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, vermeulen@chem.siu.edu
Scott J. Burgmeyer
Affiliation:
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, vermeulen@chem.siu.edu
Get access

Abstract

Solid state metal phosphonates (M(O3P-R-PO3) or M(O3P-R)2 (M = metal)) have layered structures where the metal atoms lie in planar sheets and the intervening R groups take up the interlamellar space. Microporous metal phosphonates can be prepared by reaction of the metal with a mixture of large and small phosphonates (M(O3P-LARGE)x(O3P-SMALL)2-x. The larger group acts as a pillar that holds the layers apart. Void spaces result from the presence of the smaller groups. The porous nature of these solids make them potential candidates for applications as sensors, size- and shape- selective catalysts, and chromatographic materials. Metal diphosphonates (M(O3P-R-PO3) can also be prepared one layer at a time on a surface, resulting in the construction of interesting superstructures that are not accessible through the solid state synthesis. For example, these superstructures can contain different components in sequential layers and may have applications in energy conversion, vectorial electron transport, and NLO devices. The preparation of microporous thin films would combine the desirable potential applications of the porous solids with the interesting parallel superstructures that can be prepared from the thin film assemblies. We report our progress toward the construction of microporous metal phosphonate thin films. The two methods that are currently being developed include: 1) phosphonate exchange of pre-assembled films, and 2) co-deposition of different large and small phosphonates during film assembly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, H., Kepley, L. J., Hong, H.-G., Akhter, S. and Mallouk, T. E., J. Phys. Chem. 92, 2597 (1988).Google Scholar
2. For general references for this class of materials, see Thompson, M. E., Chem. Mater. 6, 1168 (1994).G. Cao, H.-G. Hong, T. E. Mallouk, Acc. Chem. Res. 25, 420 (1992). A. Clearfield, Comm. Inorg. Chem. 10, (2,3) (1990). M. S. Whittingham, A.J. Jacobson, Intercalation Chemistry, (Academic Press, New York, 1982). R. Schollhorn, in Inclusion Compounds, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol (Academic Press, London, 1984).Google Scholar
3. Wang, J. D., Clearfield, A., Mater. Chem. Phys. 35, 208 (1993).A. Clearfield, Comm. Inorg. Chem. 10, 89 (1990). C. Y. Yang and A. Clearfield, React. Polym. 5, 13 (1987). M. B. Dines, R. E. Cooksey, P. C. Griffith, R. H. Lane, Inorg. Chem. 22, 1004 (1983). M. B. Dines and P. C. Griffith, Inorg. Chem. 22, 567 (1983).Google Scholar
4. Vermeulen, L. A., Thompson, M. E., Chem. Mater. 6, 77 (1994).D. L. King, M. D. Cooper, W. A. Sanderson, C. M. Schramm, J. D. Fellmann, Prep. Microporous Cryst. 73, 26 (1990). S. Cheng and A. Clearfield, Appl. Catal. 26, 91 (1986). A. Clearfield, J. Mol. Catal. 251 (1984). A. Clearfield, D. S. Thakur, J. Mol. Catal. 65, 185 (1980).Google Scholar
5. Cao, C., Hong, H., Mallouk, T. E., Acc. Chem. Res. 25, 420 (1992).Google Scholar
6. Lee, H., Kepley, L. J., Hong, H.-G., Akhter, S., Mallouk, T. E., J. Phys. Chem. 92, 2597 (1988).Google Scholar
7. Ungashe, S. B., Wilson, W. L., Katz, H. E., Scheller, G. R., Putvinski, T. M., J. Am. Chem. Soc. 114, 8717 (1992).Google Scholar
8. Katz, H. E., Scheller, G., Putvinski, T. M., Schilling, M. L., Wilson, W. L., Chidsey, C. E. D., Science 254, 1485 (1991).Google Scholar
9. Yang, H. C., Aoki, K., Hong, H. -G., Sackett, D. D., Arendt, M. F., Yau, S. -L., Bell, C. M., Mallouk, T. E., J. Am. Chem. Soc. 115, 11855 (1993).J. S. Snover, M. E. Thompson, J. Am. Chem. Soc. 116, 765 (1994). H. Byrd, S. Whipps, J. K. Pike, J. Ma, S. E. Nagler, D. R. Talham, J. Am. Chem. Soc. 116, 295 (1994). L. A. Vermeulen, J. L. Snover, L. S. Sapochak, M. E. Thompson, J. Am. Chem. Soc. 115, 11767 (1993). A. C. Zeppenfeld, S. L. Fiddler, W. K. Ham, B. J. Klpfenstein, C. J. Page, J. Am. Chem. Soc. 116, 9158 (1994). See also reference 8.Google Scholar
10. Rong, D., Hong, H.-G., Kim, Y. I., Krueger, J. S., Mayer, J. E., Mallouk, T. E., Coord. Chem. Rev. 97, 237 (1990).Google Scholar
11. Yamanaka, S., Sakamoto, K., Hattori, M., J. Phys. Chem. 88, 2067 (1984). S. Yamanaka, M.Hattori, Chem. Lett. 1073 (1979). C. Y. Ortiz-Avila, A. Clearfield, J. Chem. Soc. Dalton Trans. 1617 (1989).Google Scholar
12. Poojary, D. M., Shpeizer, B., Clearfield, A., J. Chem. Soc. Dalton Trans. 111 (1993). A. N. Christensen, E. K. Andersen, I. G. Andersen, G. Alberti, M. Nielsen, M. S. Lehmann, Acta Chem. Scand. 44, 865 (1990).Google Scholar
13. Vermeulen, L. A., Snover, J. L., Sapochak, L. S., Thompson, M. E., J. Am. Chem. Soc. 115, 11767 (1993).Google Scholar
14. Snover, J. L., Byrd, H., Suponeva, E. P., Vicenzi, E., Thompson, M. E., manuscriptsubmitted to Chem. Mater. (1996).Google Scholar
15. Burgmeyer, S. J., and Vermeulen, L. A., manuscript in preparation.Google Scholar