Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T12:30:10.505Z Has data issue: false hasContentIssue false

A New Field-Aided Germanium-Induced Lateral Crystallization of Silicon

Published online by Cambridge University Press:  17 March 2011

Kianoush Naeli
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Shamsoddin Mohajerzadeh
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Ali Khakifirooz
Affiliation:
Currently at Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.Akhaki@mtl.mit.edu
Saber Haji
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Ebrahim A. Soleimani
Affiliation:
Electrical and Computer Eng. Dept., University of Tehran, Tehran 14395-515, IRAN
Get access

Abstract

The effect of an electric field on germanium-seeded lateral crystallization of a-Si is studied for the first time and compared to this effect in Ni-induced lateral growth. While the crystallization rate is lower when Ge is used as the nucleation seed and annealing should be done at higher temperatures, filed-aided crystallization shows a similar behavior to that observed for Ni-induced crystallization. Optical microscopy results indicate that grain growth starting from the negative electrode occurs in Si films at annealing temperatures higher than 480°C, while the applied electric field ranges form 200 to 1400V/cm. SEM was also used to confirm the crystallinity of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, S.-W. and Joo, S.-K., IEEE Electron Device Lett. 17, 160 (1996).Google Scholar
2. Lee, S.-W., Ihn, T.-K., Joo, S.-K., IEEE Electron Device Lett. 17, 407 (1996).Google Scholar
3. Kim, T.-K., Lee, B.-I., Joo, S.-K., IEEE Device Res. Conf., 100 (1998).Google Scholar
4. Jagar, S., Chan, M., Poon, M.C., Wang, H., Qin, M., Ko, P.K., Wang, Y., IEEE Int. Electron Device Meeting, 293 (1999).Google Scholar
5. Jin, Z., Kwok, H.S., Wong, M., IEEE Electron Device Lett. 20, 167 (1999).Google Scholar
6. Wong, M., Jin, Z.; Bhat, G. A., Wong, P.C., Kwok, H.S., IEEE Trans. Electron Devices 47, 1061 (2000).Google Scholar
7. Meng, Z., Wang, M., Wong, M., IEEE Trans. Electron Devices 47, 404 (2000).10.1109/16.822287Google Scholar
8. Subramanian, V. and Saraswat, K.C., IEEE Trans. Electron Devices 45, 1934 (1998).Google Scholar
9. Subramanian, V., Toita, M., Ibrahim, N.R., Souri, S.J., Saraswat, K.C., IEEE Electron Device Lett. 20, 341 (1999).Google Scholar
10. Jang, J., Oh, J.-Y., Kim, S.-K., Choi, Y.-J., Yoon, S.-Y., Kim, C.-O., Nature 395, 481 (1998).Google Scholar
11. Yoon, S.-Y., Oh, J.-Y., Kim, C.-O., Jang, J., J. Appl. Phys. 84, 6463 (1998).Google Scholar
12. Park, S.-H., Jun, S.-I., Song, K.-S., Kim, C.-K., Choi, D.-K., Jpn. J. Appl. Phys., Part 2 38, L108 (1999).Google Scholar
13. Jun, S.-I., Yang, Y.-H., Lee, J.-B., Choi, D.-K., Appl. Phys. Lett. 75, 2235 (1999).Google Scholar
14. Khakifirooz, A., Mohajerzadeh, S., Haji, S., 47th Int. AVS Symp. (2000).Google Scholar