Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-09-01T08:28:22.172Z Has data issue: false hasContentIssue false

New Hydrides of Zr-Based Intermetallic Compounds

Published online by Cambridge University Press:  16 February 2011

I. Y. Zavaliy*
Affiliation:
Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova Str., Lviv, 290601, Ukraine
Get access

Abstract

The promising hydrogenation properties of oxygen-stabilised qr-phases with filled-Ti2Ni structure type in Zr-M-O systems (M - V, Cr, Mn, Fe, Co, Ni) are shown in this work. Hydrogenation capacity of the representative examples of compounds with 1:1 and 2:1 metal/metal ratio – Zr3V3O and Zr4Fe2Ox – are presented on the dependence of oxygen content in order to discuss its influence on the hydrogen storage capacity of Zr-based η-phases. The hydrogen disproportionation of η-Zr4Fe2Ox as well as oxygenless pseudobinary (Zr0.6Hf0.4)2Fe compounds with the same structure was studied. The reducing of metal matrix stability with the decrease of oxygen content is shown and explained by the increase of the total energy of crystal lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nevitt, M.V., Downey, J.W., Morris, R.A.. Trans AIME. 218, 1019 (1960).Google Scholar
2. Villars, P., Calvert, L.D. (Eds.), Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 3nd edn., American Society for Metals, Materials Park, OH, 1991.Google Scholar
3. McCay, R., Miller, G.J., Franzen, H.F., J. Alloys Comp. 204, 109 (1994).Google Scholar
4. Kreiner, G., Fransen, F.. J. Alloys.Comp. 221, 15 (1995).Google Scholar
5. Mintz, M.H., Hadari, Z., Dariel, M.P.. J. Less-Common Metals. 74, 287 (1980).Google Scholar
6. Hiebl, K., Tuscher, E., Bittner, H.. Monatsh.Chem. 110, 9 (1979).Google Scholar
7. Rupp, B.. J. Less-Common Metals. 104, 51 (1984).Google Scholar
8. Zavaliy, I. Yu., Riabov, A.B., Yartys, V.A., Wiesinger, G., Michor, H., Hilsher, G.. J. Alloys Comp. 264, 6 (1998).Google Scholar
9. Raj, P., Suryanarayana, P., Shashicala, K., Iyer, R.M.. J. Alloys Comp. 178, 393 (1992).Google Scholar
10. Rotella, F.J., Flotow, H.E., Gruen, D.M., Jorgensen, J.D.. J. Chem. Phys. 79, 4522 (1983).Google Scholar
11. Schlapbach, L. (Ed). Topics in Applied Physics. Vol.63.Hydrogen in Intermetallic Compounds I. Springer-Verlag, 1988.Google Scholar
12. Yartys, V.A., Zavaliy, I. Yu., Lototsky, M.V.. Koordinats. Khimiya (rus). 18, No.4, 409 (1992).Google Scholar
13. Zavaliy, I. Yu., Riabov, A.B. and Yartys, V.A.. J. Alloys and Comp. 219, 34 (1995).Google Scholar
14. Yartys, V.A., Zavaliy, I. Yu., Riabov, A.B., Lototsky, M.V., Shma'lko, Yu.F.. Z. Phys. Chemie. 183, 485 (1994).Google Scholar
15. Akselrud, L.G., Gryn’, Yu.M., Zavaliy, P. Yu., Pecharsky, V.K. and Fundamensky, V.K.. Coollect. Abstr. of the 12th Euro.Crystallogr.Meet. Moskow, Russia, June-1989. p. 155.Google Scholar
16. Vulliet, P., Teisseron, G., Oddou, J.L., Jeandey, C., Yaouanc, A.. J. Less-Common Metals. 104, 13 (1984).Google Scholar
17. Yartys’, V.A., Zavaliy, I. Yu., Riabov, A.B., Guegan, P.W., Clarke, J.C., Harris, I.R., Hauback, B.C. and Fjellvag, H.. Hydrogen Power: Theoretical and Engineering Solutions. Proceedings of the Int. Symp. HYPOTHESIS II, Grimstad, Norway, 18-22 August 1997. Kluwer Acad.Publisher, The Netherlands, pp.303 (1998).Google Scholar
18. Yartys, V.A. ’, Fjellvag, H., Harris, I.R., Hauback, B.C., Riabov, A.B., Sorby, M.H., Zavaliy, I. Yu., to be published in J. Alloys and Comp.Google Scholar