Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-09T05:58:01.040Z Has data issue: false hasContentIssue false

New Substituted Pyrochlore-Type Manganates with Magnetoresistive Properties

Published online by Cambridge University Press:  16 February 2011

W. Cheikh-Rouhou
Affiliation:
Laboratoire de Cristallographie CNRS, BP166, 38042 Grenoble Cedex 9, France
R. Senis
Affiliation:
Instituto de Ciencia de Materiales de Barcelona, CSIC, Bellaterra 08193, Spain
C. Chaillout
Affiliation:
Laboratoire de Cristallographie CNRS, BP166, 38042 Grenoble Cedex 9, France
P. Strobel
Affiliation:
Laboratoire de Cristallographie CNRS, BP166, 38042 Grenoble Cedex 9, France
B. Martinez
Affiliation:
Instituto de Ciencia de Materiales de Barcelona, CSIC, Bellaterra 08193, Spain
X. Obradors
Affiliation:
Instituto de Ciencia de Materiales de Barcelona, CSIC, Bellaterra 08193, Spain
Get access

Abstract

Substitutions in the pyrochlore-type oxide Tl2Mn2O7 have been carried out on both the Mn and the TI site, using high pressure synthesis at 4-6 GPa. We show that a continuous solid solution exists between Tl2Mn2O7, and Tl2Ru2O7, and that the replacement of a fraction of Mn by Ru dramatically changes the transport properties from metallic to semiconducting and induces magnetoresistance (MR) in this system. MRs up to 95% (vs. RO) have been observed. The Tl site, already known to accept In or Sc, can also be substituted by the larger cation Bi3+, which also induces a metal-insulator transition at low substitution level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Subramanian, M.A., Toby, B.H., Ramirez, A.P., Marshall, W.J., Sleight, A.W. and Kwei, G.H., Science, 1996, 273, 81.Google Scholar
2. Shimakawa, Y., Kubo, Y. and Manako, T., Nature, 1996, 379, 53;Google Scholar
Shimakawa, Y., Kubo, Y., Manako, T., Sushko, Y.V., Argyriou, D.N. and Jorgensen, J.D., Phys. Rev. B, 1997, 55, 6399.Google Scholar
3. Rosenfeld, H.D. and Subramanian, M.A., J. Solid State Chem., 1996, 125, 278.Google Scholar
4. Cheong, S.W., Hwang, H.Y., Batlogg, B. and Rupp, L.W., Solid State Comm., 1996, 98, 163.Google Scholar
5. Ramirez, A.P. and Subramanian, M.A., Science, 1996, 273, 81.Google Scholar
6. Kobayashi, H., Kanno, R., Kawamoto, Y., Kamiyama, T., Izumi, F. and Sleight, A.W., J. Solid State Chem., 1995, 114, 15.Google Scholar
7. Cao, G., McCall, S.C., Crow, J.E. and Guertin, R.P., Phys. Rev. B, 1997, 56, 5387.Google Scholar
8. Shannon, R.D., Acta Crystallogr., 1976, A32, 751.Google Scholar
9. Cheikh-Rouhou, W., Strobel, P., Chaillout, C., Loureiro, S.M., Senis, R., Martinez, B., Obraodrs, X. and Pierre, J., J. Mat. Chem., submitted.Google Scholar
10. Subramanian, M.A. and Sleight, A.W. in Handbook on the Physics and Chemistry of Rare Earths, Gschneider, K.A. and Eyring, L., Ed., Elsevier, Amsterdam, 1993, 16, 225.Google Scholar
11. Beyerlein, R.A., Horowitz, H.S., Longo, J.M., Leonowicz, M.E., Jorgensen, J.D. and Rotella, F.J., J. Solid State Chem., 1984, 51, 253.Google Scholar
12. Kennedy, B.J., J. Solid State Chem., 1996, 123, 14.Google Scholar
13. Senis, R., Martinez, B., Obradors, X., Cheikh-Rouhou, W., Chaillout, C., Pernet, M. and Strobel, to be published.Google Scholar