Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T10:49:22.906Z Has data issue: false hasContentIssue false

A new way to nanostructure hydrogels: Electrospun Thermo-responsive Islands-in-the-Sea Nanofibres

Published online by Cambridge University Press:  29 February 2012

Jing Wang
Affiliation:
Institute for Technology Research and Innovation, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC 3216, Australia
Alessandra Sutti
Affiliation:
Institute for Technology Research and Innovation, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC 3216, Australia
Xungai Wang
Affiliation:
Institute for Technology Research and Innovation, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC 3216, Australia
Tong Lin
Affiliation:
Institute for Technology Research and Innovation, Deakin University, 75 Pigdons Rd, Waurn Ponds, VIC 3216, Australia
Get access

Abstract

An effective strategy to produce thermo-responsive islands-in-the-sea hydrogel nanofibres was developed using a single needle electrospinning setup. The produced hydrogel nanofibre mats not only showed excellent temperature response and high response speed, but also showed nanostructured surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, C., Soenen, S. J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J. and De Smedt, S. C., Chem. Soc. Rev. 40 (5), 24172434 (2011).Google Scholar
2. Liu, H. Q., Zhen, M. and Wu, R. H., Macromol. Chem. Phys. 208 (8), 874880 (2007).Google Scholar
3. Fu, G. D., Xu, L. Q., Yao, F., Li, G. L. and Kang, E. T., ACS Appl. Mater. Interfaces 1 (11), 24242427 (2009).Google Scholar
4. Rutledge, G. C., Wang, A., Singh, H. and Hatton, T. A., Polymer 45 (16), 55055514 (2004).Google Scholar
5. Ma, Z., Kotaki, M., Inai, R. and Ramakrishna, S., Tissue Eng. 11 (1–2), 101109 (2005).Google Scholar
6. Liu, H. Q., Cao, S. G. and Hu, B. H., Polym. Int. 58 (5), 545551 (2009).Google Scholar
7. Kim, S. E. and, et al. ., Biomed. Mater. 4 (4), 044106 (2009).Google Scholar
8. Liu, H. Q., Tang, C. Y. and Chen, P. P., Polym. Eng. Sci. 48 (7), 12961303 (2008).Google Scholar
9. Kingshottt, P., Chen, M. L., Dong, M. D., Havelund, R., Regina, V. R., Meyer, R. L. and Besenbacher, F., Chem. Mater. 22 (14), 42144221 (2010).Google Scholar
10. Hsieh, Y. L. and Zhang, L. F., J. Nanosci. Nanotechnol. 8 (9), 44614469 (2008).Google Scholar
11. Jin, X. and Hsieh, Y.-L., Polymer 46 (14), 51495160 (2005).Google Scholar
12. Song, M., Pan, C., Li, J., Zhang, R., Wang, X. and Gu, Z., Talanta 75 (4), 10351040 (2008).Google Scholar
13. Chen, M., Dong, M., Havelund, R., Regina, V. R., Meyer, R. L., Besenbacher, F. and Kingshott, P., Chem. Mater. 22 (14), 42144221 (2010).Google Scholar
14. Lin, T., Wang, H. and Wang, X., Adv. Mater. 17 (22), 26992703 (2005).Google Scholar
15. Liu, R., Cai, N., Yang, W., Chen, W. and Liu, H., J. Appl. Polym. Sci. 116 (3), 13131321 (2010).Google Scholar
16. Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H. and Greiner, A., Adv. Mater. 15 (22), 19291932 (2003).Google Scholar
17. Lin, T., Wang, H., Wang, H. and Wang, X., Nanotechnology 15, 13751381 (2004).Google Scholar
18. Wang, J., Sutti, A., Wang, X. and Lin, T., Soft Matter 7 (9), 43644369 (2011).Google Scholar
19. Bognitzki, M., Frese, T., Steinhart, M., Greiner, A., Wendorff, J. H., Schaper, A. and Hellwig, M., Polym. Eng. Sci. 41 (6), 982989 (2001).Google Scholar