Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T10:17:04.670Z Has data issue: false hasContentIssue false

Nisi2-Formation By 6 Mev High Dose Nickel Implantation Into Silicon

Published online by Cambridge University Press:  28 February 2011

J.K.N. Lindner
Affiliation:
Inst. of Physics, University of Dortmund, POB 500500, D-4600 Dortmund, FRG
E.H.Te Kaat
Affiliation:
Inst. of Physics, University of Dortmund, POB 500500, D-4600 Dortmund, FRG
Get access

Abstract

Deep buried metallic layers are formed by 6 MeV high dose Ni implantation into Si at 450 K. The layers have been characterized by optical reflectivity and spreading resistance depth profiling as well as TEM and XTEM. They consist of epitaxially grown NiSi2 crystallites of both type-A and type-B orientations and thin NiSi2-platelets on {111} lattice planes. Investigations indicate the suppression of amorphization by Ni as well as damage gettering of Ni atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tung, R.T., Gibson, J.M., and Levi, A.F.J., Appl. Phys. Lett. 48 (19), 1264 (1986).Google Scholar
2 Bean, J.C. and Poate, J.M., Appl. Phys. Lett. 37, 643 (1980).Google Scholar
3 Hensel, J.C., Levi, A.F.J., Tung, R.T., and Gibson, J.M., Appl. Phys. Lett. 47 (2), 151 (1985).Google Scholar
4 White, A.E., Short, K.T., Dynes, R.C., Garno, J.P., and Gibson, J.M., Appl. Phys. Lett. 50,(2), 95 (1987).Google Scholar
5 Campisi, G.J., Dietrich, H.B., Delfino, M., and Sadana, D.K. (Mater. Res. Soc. Proc. 54, Pittsburgh, PA 1986) pp. 747.CrossRefGoogle Scholar
6 Sanchez, F.H., Namavar, F., Budnick, J.I., Fasihudin, A., and Hayden, H.C. in Bjeam-golid Interactions and Phase Transformations, (Mater. Res. Soc, Pittsburgh, PA 1986), pp. 439.Google Scholar
7 Yu. Petukhov, V., Khaibullin, I.B., and Zaripov, M.M., Phys. Chem. Mech. Surfaces 4 (2), 522 (1986).Google Scholar
8 Heidemann, K.F., Phil. Mag. B44 (4), 465 (1981).Google Scholar
9 Dolata, R., Lindner, J.K.N., and te Kaat, E., to be published.Google Scholar
10 Lindner, J.K.N., and te Kaat, E., presented at the EPM 87, Dresden, GDR 1987; submitted for publication in the Proceedings of the EPM 87 within the series Physical Research (Akademie-Verlag, Berlin).Google Scholar
11 BuBmann, U., Hecking, N., Heidemann, K.F., and te Kaat, E., Nucl. Instr. and Meth. B15, 105 (1986).Google Scholar
12 Lindner, J.K.N., Hecking, N., and te Kaat, E., Nucl. Instr. and Meth. B26, 551 (1987).CrossRefGoogle Scholar
13 Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, in: The Stopping and Range of Ions in Matter, Vol. 1, edited by Ziegler, J.F. (Pergamon Press, New York 1985).Google Scholar
14 Baglin, J., d'Heurle, F., and Petersson, S., in Thin Film Interfaces and Interactions, edited by Poate, J. and Baglin, J. (The Electrochemical Society, Princeton, 1980) pp. 341.Google Scholar
15 Maenpaa, M., Hung, L.S., Nicolet, M.-A., Sadana, D.K., and Lau, S.S., Thin Solid Films 87, 277 (1982).CrossRefGoogle Scholar
16 Belz, J., Heidemann, K.F., Kappert, H.F., and te Kaat, E., phys. stat. sol. (a) 76, K81 (1983)Google Scholar
17 Ishiwara, H., Hikosaka, K., and Furukawa, S., Appl. Phys. Lett. 31 (1), 23 (1978).Google Scholar