Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T23:24:16.506Z Has data issue: false hasContentIssue false

NMR and IR Spectroscopic Examination of the Hydrolytic Stability of Organic Ligands in Metal Alkoxide Complexes and of Oxygen Bridged Heterometal Bonds

Published online by Cambridge University Press:  10 February 2011

D. Hoebbel
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
T. Reinert
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
H. Schmidt
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
Get access

Abstract

IR and 13C NMR investigations of the hydrolytic stabilities of the saturated and unsaturated ß-keto ligands acetylacetone (ACAC), ethylacetoacetate (EAA), allylacetoacetate (AAA), methacryloxyethyl-acetoacetate (MEAA) of the Al-, Ti- and Zr-butoxide complexes show a strong dependence on the type of the metal alkoxide and the structure of the organic ligands. The hydrolytic stabilities of the ligands decrease in the order Al->Zr->Ti-alkoxide and ACAC>AAA>EAA≥MEAA. Sol-gel reactions of complexes having a weak ligand stability leads to a larger water consumption and to larger particle sizes in sols than those with stable ACAC ligands. Heterometal bonds, i.e. Si-O-Al, Si-O-Ti and Si-O-Zr, in the system diphenylsiloxanediol/ metal alkoxide (complex) proved by 29Si and 17O NMR are hydrolysed to a different extent depending on the water amount, the type of the Si-O-M bond and the structure of the heterometal species. The degradation of the heterometal bonds leads to a separation of MO-M and Si-O-Si bonds which can entail a decreased homogeneity of the materials at a molecular level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mehrotra, R.C., Chemistry. Spectroscopy and Applications of Sol-Gel Glasses, edited by Reisfeld, R., Jorgensen, C.K. (Springer-Verlag, Berlin, Heidelberg, 1992).Google Scholar
2. Brinker, C.J., Clark, D.E., Ulrich, D.R., Better Ceramics Through Chemistry, (Elsevier Science Publishers, New York, 1984).Google Scholar
3. Schmidt, H., J. Non-Cryst. Solids 100, 5164 (1988).Google Scholar
4. Schubert, U., Hüsing, N., Lorenz, A., Chem. Mater. 7, 20102027 (1995).Google Scholar
5. Brinker, C.J. and Scherer, C.W., Sol-Gel Science, (Academic Press, New York, 1990).Google Scholar
6. Dirken, P.J., Smith, M.E., Whitfield, H.J., J. Phys. Chem. 99, 395 (1995).Google Scholar
7. Jonas, J., Irwin, A.D. and Holmgren, J.S., in Ultrastructure Processing of Advanced Materials, edited by Uhlmann, D.R. and Ulrich, D.R. (J. Wiley, 1992) pp. 303314.Google Scholar
8. Sanchez, C., Ribot, F., New J. Chem. 18, 10071047 (1994).Google Scholar
9. Zeitler, V.A. and Brown, C.A., J. Am. Chem. Soc. 79, 46184621 (1957).Google Scholar
10. Toledano, P., In, M., Sanchez, C., C.R. Acad. Sci. Paris 313, 1247 (1991).Google Scholar
11. Hoebbel, D., Reinert, T., Schmidt, H., Arpac, E., to be published (1996).Google Scholar
12. Schmidt, H. and Seiferling, B., Mat. Res. Soc. Symp. Proc. 73, 739750 (1986).Google Scholar
13. Schutte, C.L., Fox, J.R., Boyer, R.D. and Uhlmann, D.R., in Ultrastructure Processing of Advanced Materials, edited by Uhlmann, D.R. and Ulrich, D.R. (J. Wiley, 1992) pp. 95102.Google Scholar
14. Babonneau, F., Mat. Res. Soc. Symp. Proc. 346, 949960 (1994).Google Scholar
15. Hoebbel, D., Reinert, T., Schmidt, H., J. Sol-Gel Sci. Technol. in press (1996).Google Scholar
16. Pozarnsky, G.A., McCormick, A.V., J. Non-Cryst. Solids 190, 212225 (1995).Google Scholar