Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-01T02:25:40.075Z Has data issue: false hasContentIssue false

Non-linear charge transport in polythiophene under high AC field

Published online by Cambridge University Press:  01 February 2011

Jan Obrzut
Affiliation:
jan.obrzut@nist.gov, National Institute of Standards and Technology, 100 Bureau Dr, STOP 8541, Gaithersburg, MD, 20899, United States
Tatiana Psurek
Affiliation:
tatiana.psurek@nist.gov
C. K. Chiang
Affiliation:
CK.chiang@nist.gov
Dean M. DeLongchamp
Affiliation:
d.delongchamp@nist.gov
Get access

Abstract

Complex impedance and conductivity were measured for regioregular poly(3-hexylthiophene) (P3HT) at alternating current (AC) voltages using a waveform technique. The waveforms were Fourier transformed from time domain to frequency domain and analyzed at fundamental and higher order harmonic frequencies. It was found that the impedance of the semi-conducting P3HT decreases with increasing electric field strength. The non-linear charge transport is dominated by a third harmonic response that originates from extended polarizability of π-type electronic states. The third order non-linear conductivity can be used to quantify the effect of an electric field on the conduction mechanism and to correlate the intrinsic charge carriers mobility with molecular structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horowitz, G., in Semi-conducting Polymers, edited by Hadziioannou, G. and Van Hutten, P.F, (Wiley-VCH, New York, 2000) p. 463.Google Scholar
2. Katz, H. E., Dodabalapur, A., Bao, Z., in Handbook of Oligo and Polythiophenes, edited by Fichou, D., (Wiley-VCH, New York, 1999) p. 459.Google Scholar
3. Sirringfaus, H., Brown, P. J., Friend, R. H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P., De Leeuw, D. M., Nature, 401, 685 (1999).Google Scholar
4. Burin, A. L., Ratner, M. A., J. Polym. Sci, B 41, 2601 (2003).Google Scholar
5. Furukawa, T., Nakajima, K., Koizumi, T., and Date, M., Jap. J. Appl. Phys., 26, 1039 (1987).Google Scholar
6. Gu, G., Hui, P. M., Yu, K., Physica B 279, 62 (2000).Google Scholar
7. Levy, O., Bergman, D. J., Stroud, D., Physical Rev. E, 52, 3184 (1995).Google Scholar
8. Huang, J. P., Yu, K. W., Karttunen, M., Phys. Rev. E, 70 11403–1 (2004).Google Scholar
9. Obrzut, J. and Kano, K., IEEE Trans. Instr. Meas., 54, 1570 (2005).Google Scholar
10. Simmons, J. G., Phys Rev., 155, 657 (1967).Google Scholar
11. Campos, M., Cavalcante, E. M., and Kalinowski, J., J. Polym. Sci., B 34, 623 (1996).Google Scholar
12.Electrical Transport in Solids with Particular Reference to Organic Semiconductors”, Kao, K. C., Hwang, W., Chapter 5.3., pp. 303 – 309, Pergamon Press, NY, 1981.Google Scholar