Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T20:37:31.888Z Has data issue: false hasContentIssue false

Novel Materials Based on Organic-Tungsten Oxide Hybrid Systems

Published online by Cambridge University Press:  10 February 2011

Bridget Ingham
Affiliation:
Victoria University of Wellington, P O Box 600, Wellington, New Zealand.
Shen V. Chong
Affiliation:
Industrial Research Limited, P O Box 31 310, Lower Hutt, New Zealand.
Jeff L. Tallon
Affiliation:
Victoria University of Wellington, P O Box 600, Wellington, New Zealand. Industrial Research Limited, P O Box 31 310, Lower Hutt, New Zealand.
Get access

Abstract

The physical and electronic properties of tungsten oxide and some related hybrid materials have been examined via various spectroscopic techniques and the results complemented by ab initio computation. Hybrid materials based on intercalated straight-chain σ,ω-diaminoalkanes in between sheets of corner-shared tungsten-oxide octahedra exhibit from XRD a linear expansion in the interlayer spacing with increasing number of carbon atoms in the amines. UV-visible diffuse reflectance spectra of several hybrid powders indicate a dominant absorption edge centred at 4.0 eV, with no apparent trend among the different samples as the alkyl chain length changes. This is higher than that of tungsten trioxide powder, which has an absorption edge centred at 2.8 eV. Ab initio calculations show that these experimental values may relate to the indirect band-gap energies of the respective compounds rather than the optical band gap. This was confirmed from the absorption coefficient results of WO3 thin films which yield a strong edge at 4.0 eV. Similar measurements of hybrid films with 1,12-diaminododecane as the organic spacer showed absorption throughout the visible range, with weak features at 4.2 and 4.9 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deb, S. K., Phil. Mag. 27, 801 (1973).Google Scholar
2. Bange, K., Sol. Energy Mater. Sol. Cells 58, 1 (1999); and references therein.Google Scholar
3. Lee, S.H., Cheong, H. M., Tracy, C. E., Mascarenhas, A., Czanderna, A. W. and Deb, S. K., Appl. Phys. Lett. 75, 1541 (1999).Google Scholar
4. Lampert, C. M., Sol. En. Mater. Sol. Cells 52, 207 (1998).Google Scholar
5. Hagenmuller, P., “Tungsten Bronzes, Vanadium Bronzes and Related Compounds,” Comprehensive Inorganic Chemistry, ed. Bailar, J. C. Jr , Emeléus, H. J., Nyholm, R. and Trotman-Dickenson, A. F. (Pergamon, Oxford, 1973) pp. 541563.Google Scholar
6. Wells, A. F., Structural Inorganic Chemistry (Clarendon Press, Oxford, 1987).Google Scholar
7. Figlarz, M., Prog. Solid State Chem. 19, 1 (1989).Google Scholar
8. Guo, J. D., Reis, K. P. and Whittingham, M. S., Solid State Ionics 53, 315 (1992).Google Scholar
9. Szymanski, J. T. and Roberts, A. C., Can. Mineral. 22, 681 (1984).Google Scholar
10. Krebs, B., Acta Cryst. B28, 2222 (1972).Google Scholar
11. Balàzsi, C. and Pfeifer, J., Sol. Energy Mater. Sol. Cells 76, 577 (2003).Google Scholar
12. Ayyappan, S., Subbanna, G. N. and Rao, C. N. R., Chem. Eur. J. 1, 165 (1995).Google Scholar
13. Chemseddine, A., Babonneau, F. and Livage, J., J. Non-Cryst. Solids 91, 271 (1987).Google Scholar
14. Johnson, J. W., Jacobson, A. J., Rich, S. M. and Brody, J. F., J. Am. Chem. Soc. 103, 5246 (1981).Google Scholar
15. Reich, S. and Tsabba, Y., Euro Phys. J. B9, 1 (1999).Google Scholar
16. Levi, Y., Millo, O., Sharoni, A., Tsabba, Y., Leitus, G. and Reich, S., Europhys. Lett. 51, 564 (2000).Google Scholar
17.a. Kresse, G. and Furthmüller, J., Phys. Rev. B54, 169 (1996); b. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).Google Scholar
18. Kitaigorodskii, A. I., Molecular Crystals and Molecules (Academic Press, New York, 1973).Google Scholar
19. Silverstein, R.M., Bassler, G. C. and Morrill, T. C., Spectrometric Identification of Organic Compounds (Wiley, New York, 1991).Google Scholar
20. Segol, L., Appl. Spec. 17, 21 (1963).Google Scholar
21. Chong, S. V., Ingham, B. and Tallon, J. T., Curr. Appl. Phys. (submitted).Google Scholar
22. Likalter, A. A., Physica B 315, 252 (2002).Google Scholar
23. Davazoglou, D. and Donnadieu, A., Thin Solid Films 147, 131 (1987).Google Scholar
24. Hjelm, A., Granqvist, C. G. and Wills, J.M., Phys. Rev. B 54, 2436 (1996).Google Scholar
25. Rieck, G. D., Tungsten and its Compounds (Pergamon Press, Oxford, 1967) pp. 9495.Google Scholar