Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-17T23:24:09.117Z Has data issue: false hasContentIssue false

A Novel Scheme for Accurate Md Simulations of Large Systems

Published online by Cambridge University Press:  10 February 2011

Alessandro De Vita
Affiliation:
Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA), PPH-Ecublens, CH-1015 Lausanne, Switzerland
Roberto Car
Affiliation:
Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA), PPH-Ecublens, CH-1015 Lausanne, Switzerland
Get access

Abstract

We present a simple and informationally efficient approach to electronic-structure-based simulations of large material science systems. The algorithm is based on a flexible embedding scheme, in which the parameters of a model potential are fitted at run time to some precise information relevant to localised portions of the system. Such information is computed separately on small subsystems by electronic-structure “black box” subprograms, e.g. based on tight-binding and/or ab initio models. The scheme allows to enforce electronic structure precision only when and where needed, and to minimise the computed information within a desired accuracy, which can be systematically controlled. Moreover, it is inherently linear scaling, and highly suitable for modern parallel platforms, including those based on non-uniform processing. The method is demonstrated by performing computations of tight-binding accuracy on solid state systems in the ten thousand atoms size scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhou, S.J., Beazley, D.M., Lomdahl, P.S. and Holian, B.L., Phys. Rev. Lett. 78 479, (1997).Google Scholar
2. De Vita, A. and Car, R., in preparation.Google Scholar
3. Tuckermann, M.E., Martyna, G.J. and Berne, B.J., J. Chem. Phys. 93(2), 1287 (1990);Google Scholar
Tuckermann, M.E. and Berne, B.J., J. Chem. Phys. 94(2), 1465 (1991).Google Scholar
4. Cfr. e.g. abstracts P 1.7 (E.B. Tadmor, E. Kaxiras and N. Bernstein), P 5.1 (V.B. Shenoy and R. Phillips), P 9.6 (D.E. Rodney and R. Phillips) and *P 9.8 (R. Phillips, W.W. Gerberich, D. Kramer and E.B. Tadmor) in the MRS 1997 Fall Meeting Abstracts Book, and related articles in this book of proceedings.Google Scholar
5. Cfr. abstract *P 9.8 (Phillips, R., Gerberich, W.W., Kramer, D. and Tadmor, E.B.) in the MRS 1997 Fall Meeting Abstracts Book.Google Scholar
6. Broughton, J.Q., private communication.Google Scholar
7. Payne, M.C., Stich, I., De Vita, A., Gillan, M.J. and Clarke, L.J., Faraday Discuss. 96, 151 (1993).Google Scholar
8. Kohn, W., Phys. Rev. Lett. 76, 3168 (1996).Google Scholar
9. Ercolessi, F., Tosatti, E. and Parrinello, M., Phys. Rev. Lett. 57, 719 (1986);Google Scholar
Daw, M.S. and Baskes, M.I., Phys. Rev B 29, 6443 (1984);Google Scholar
Finnis, M.W. and Sinclair, J.E., Phil. Mag A 50, 45 (1984).Google Scholar
10. Ercolessi, F. and Adams, J.B., Europhys. Lett. 26, 583 (1994).Google Scholar
11. Goodwin, et al., Europhys. Lett. 9, 701 (1989).Google Scholar
12. Weber, T.A. and Stillinger, F.H., J. Chem. Phys. 92, 6239 (1990).Google Scholar
13. Panzarini, G. and Colombo, L., Phys. Rev. Lett. 73, 1636 (1994);Google Scholar
Panzarini, G. and Colombo, L., Phase Transitions 52, 137 (1994).Google Scholar
14. Lee, T.-S., York, D.M. and Yang, W., J. Chem. Phys. 105, 2744 (1996);Google Scholar
Yang, W., Phys. Rev. Lett. 66, 1438 (1991).Google Scholar