Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-07T11:19:20.932Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance Studies of δ-Stabilized Plutonium

Published online by Cambridge University Press:  01 February 2011

N. J. Curro
Affiliation:
Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, curro@lanl.gov
L. Morales
Affiliation:
Nuclear Materials and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (Dated: December 5, 2003)
Get access

Abstract

Nuclear Magnetic Resonance studies of Ga stabilized δ-Pu reveal detailed information about the local distortions surrounding the Ga impurities as well as provides information about the local spin fluctuations experienced by the Ga nuclei. The Ga NMR spectrum is inhomogeneously broadened by a distribution of local electric field gradients (EFGs), which indicates that the Ga experiences local distortions from cubic symmetry. The Knight shift and spin lattice relaxation rate indicate that the Ga is dominantly coupled to the Fermi surface via core polarization, and is inconsistent with magnetic order or low frequency spin correlations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sarrao, J. L., Morales, L. A., Thompson, J. D., Scott, B. L., Stewart, G. R., Wastin, F., Rebizant, J., Boulet, P., Collneau, E., and Lander, G. H., Nature 420, 297 (2002)Google Scholar
[2] Boring, A. M. and Smith, J. L., Los Alamos Science 26 90 (2000)Google Scholar
[3] Lashley, J.C., Singleton, J., Migliori, A., Betts, J.B., Fisher, R. A., Smith, J. L., and McQueeney, R.J., Phys. Rev. Lett. 91 205901 (2003)Google Scholar
[4] Wills, J. M. et al., cond-mat/0307767 and references therein.Google Scholar
[5] Savrasov, S. Y., Kotliar, G. and Abrahams, E., Nature 410 793 (2001)Google Scholar
[6] Hecker, S. S., Los Alamos Science 26 90 (2000)Google Scholar
[7] Bouchet, J., Siberchicot, B., Jollet, F. and Pasturel, A., J. Phys.: Condens. Matter 12 1723 (2000)Google Scholar
[8] Conradson, S. D., Appl. Spec. 52 252 1999)Google Scholar
[9] Fradin, F. Y. and Brodsky, M. B., Intern. J. Magnetism 1 89 (1970)Google Scholar
[10] Meot-Reymond, S., and Fournier, J. M., Jour. Alloys and Compounds; 232 119 (1996)Google Scholar
[11] Korringa, J., Physica 16 601 (1950)Google Scholar
[12] Pines, D., Solid State Physics 1, ed. by Seitz, F. and Turnbull, D. (Academic, New York, 1955)Google Scholar
[13] Slichter, C. P., Principles of Magnetic Resonance, 3rd. Ed. (Springer Verlag, New York, 1990)Google Scholar
[14] Clogston, A. M., Jaccarino, V., and Yafet, Y., Phys. Rev. 134 650 (1964)Google Scholar
[15] Arko, A. J., Joyce, J. J., Morales, L., Wills, J., Lashley, J., Wastin, F. and Rebizant, J., Phys. Rev. B. 62 1773 (2000)Google Scholar
[16] Yafet, Y. and Jaccarino, V., Phys. Rev. 133 1630 (1964)Google Scholar
[17] Fradin, F. Y. in Plutonium and Other Actinides, edited by Blank, H. and Lindner, R., (North-Holland, Amsterdam, 1976)Google Scholar
[18] Wirth, B. D., Schwartz, A. J., Fluss, M. J., Caturla, M.J., Wall, M. A., Wolfer, W. G., MRS Bulletin 26 679 (2001); M. J. Fluss, et al., in press J. Alloys Comp.Google Scholar
[19] Pennington, C. H. and Slichter, C. P., Phys. Rev. Lett. 66, 381 (1991)Google Scholar
[20] Walstedt, R. E. and Cheong, S-W., Phys. Rev. B 51, 3163 (1995);Google Scholar
Recchia, C. H., Gorny, K. and Pennington, C. H., Phys. Rev. B 54, 4207 (1996)Google Scholar
[21] Curro, N. J. and Slichter, C. P., J. Mag. Res. 130, 186 (1998)Google Scholar
[22] Fine, B. V., cond-mat/9707249Google Scholar
[23] Curro, N. J., J. Phys. Chem. Solids 63 2181 (2002)Google Scholar