Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T11:18:09.442Z Has data issue: false hasContentIssue false

Nucleation Processes in Si CVD on Ultrathin SiO2 Layers

Published online by Cambridge University Press:  09 August 2011

T. Yasuda
Affiliation:
Joint Research Center for Atom Technology (JRCAT)-National Institute for Advanced Interdisciplinary Research (NAIR), Tsukuba, 305-8562, Japan, tyasuda@jrcat.or.jp
D. S. Hwang
Affiliation:
Joint Research Center for Atom Technology (JRCAT)-Angstrom Technology Partnership (ATP), Tsukuba, 305-0046, Japan
K. Ikuta
Affiliation:
Joint Research Center for Atom Technology (JRCAT)-National Institute for Advanced Interdisciplinary Research (NAIR), Tsukuba, 305-8562, Japan, tyasuda@jrcat.or.jp
S. Yamasaki
Affiliation:
Joint Research Center for Atom Technology (JRCAT)-National Institute for Advanced Interdisciplinary Research (NAIR), Tsukuba, 305-8562, Japan, tyasuda@jrcat.or.jp
K. Tanaka
Affiliation:
Joint Research Center for Atom Technology (JRCAT)-National Institute for Advanced Interdisciplinary Research (NAIR), Tsukuba, 305-8562, Japan, tyasuda@jrcat.or.jp
Get access

Abstract

We investigate nucleation densities in UHV-CVD of Si on ultrathin SiO2 layers (0.2-2 nm) which were prepared by three different oxidation methods: thermal, UV-ozone, and plasma oxidation. The experiments changing the Si2H6 pressure in UHV-CVD indicate that these oxide surfaces have preferred sites for nucleation. Among the three oxidation methods, the nucleation density, Ns, on the thermal oxide is the lowest, while the plasma oxide shows the highest Ns. These results suggest that strained bonds and ion-induced damages in the oxide layers assist nucleation. For UV-ozone and plasma oxides Ns is independent of orientation, reconstruction, and morphology of the initial Si surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hwang, D. S., Yasuda, T., Ikuta, K., Yamasaki, S., and Tanaka, K., Jpn. J. Appl. Phys. 37, L1087 (1998).Google Scholar
2. Yasuda, T., Hwang, D. S., Park, J. W., Ikuta, K., Yamasaki, S., Tanaka, K., Appl. Phys. Lett. 7 4 (in press)Google Scholar
3. Hu, Y.Z., Diel, D. J., Zhao, C.Y., Wang, C. L., Liu, Q., Irene, E. A., Christensen, K. N., Venable, D., Maher, D.M., J. Vac. Sci. Technol. B 14, 744 (1996); Hu, Y. Z., Zhao, C.Y., Basa, C., Gao, WX., Irene, E. A., Appl. Phys. Lett.6 9, 485 (1996).Google Scholar
4. K.F. Kelton, A. Greer, L., and Thompson, C. V., J. Chem. Phys. 79, 6261 (1983).Google Scholar
5. Park, J. W., Yasuda, T., Ikuta, K., Kuo, L.H., Yamasaki, S., and Tanaka, K., Mater. Res. Soc. Symp. Proc. 448, 271 (1997).Google Scholar
6. Higashi, G. S., Becker, R. S., Chabal, Y. J., and Becker, A. J., Appl. Phys. Lett. 58, 1656 (1991).Google Scholar
7. Bramblett, T.R., Lu, Q., Karasawa, T., Hasan, M.-A., Jo, S.K., and Greene, J.E., J. Appl. Phys. 76, 1884 (1994).Google Scholar
8. Lewis, B. and Andersono, J. C., Nucleation and Growth of Thin Films (Academic Press, London, 1978), p.287.Google Scholar
9. Fujita, K., Watanabe, H., and Ichikawa, M., Appl. Phys. Lett. 70, 2807 (1997).Google Scholar
10. Ikuta, K., Park, J. W., Kuo, L.H., Yasuda, T., Yamasaki, S., and Tanaka, K., Mater. Res. Soc. Symp. Proc. 452, 743 (1997).Google Scholar