Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-25T14:37:01.761Z Has data issue: false hasContentIssue false

Observation of an Exponential FeSi Spacer Thickness Dependence of the Antiferromagnetic Exchange Coupling in Fe/Si-Based Multilayers

Published online by Cambridge University Press:  15 February 2011

J.T. Kohlhepp
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.J. De Vries
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
F.J.A. Den Broeder
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R. Coehoorn
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R.M. Jungblut
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
A. Reinders
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
G.J. Strijkers
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
A.A. Smits
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
W.J. Mde Jonge
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

The magnetic interlayer exchange coupling in Fe/Si-based thin film structures employing sputtered multilayers with variations of Si-alloyed Fe for the magnetic layers and Fe-alloyed Si spacers, as well as wedge-shaped MBE-grown Fe/Si/Fe sandwich samples has been systematically studied. From structural and magnetic analysis it is concluded that ultrathin Si and FexSi100-x (x < 50) spacer layers transform into a crystalline iron suicide with a composition close to Fe50Si50. The exchange coupling mediated by this metallic suicide is antiferromagnetic and depends on the spacer thickness in an exponential, i.e. non-oscillatory, manner with a universial characteristic decay length of 3–4 Å at room temperature. This observation can be qualitatively explained within the framework of a recent coupling theory on the premise that the FeSi interlayer has the metastable CsCl(B2)-structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] see for example: Fert, A. and Bruno, P., in Ultrathin Magnetic Structures II, edited by Bland, J.A.C. and Heinrich, B. (Springer, Berlin, 1994), pp. 82117;Google Scholar
Pierce, D.T., Unguris, J., and Celotta, R.J., in Ultrathin Magnetic Structures II, edited by Bland, J.A.C. and Heinrich, B. (Springer, Berlin, 1994), pp. 117147;Google Scholar
Parkin, S.S.P., in Ultrathin Magnetic Structures II, edited by Bland, J.A.C. and Heinrich, B. (Springer, Berlin, 1994), pp. 148 186; and references cited therein.Google Scholar
[2] Bruno, , Phys. Rev. B52, 411 (1995).Google Scholar
[3] Slonczewski, J.C., Phys. Rev. B39, 6995 (1989).Google Scholar
[4] Shi, Z.P., Levy, P.M., and Fry, J.L., Europhys. Lett. 26, 473 (1994).Google Scholar
[5] Bloemen, P.J.H., van Alphen, E.A.M., and de Jonge, W.J.M., J. Magn. Magn. Mater. 104–107, 1775 (1992).Google Scholar
[6] Celinski, Z., Heinrich, B., and Cochran, J.F., J. Appl. Phys. 70, 5870 (1991).Google Scholar
[7] Heinrich, B., From, M., Cochran, J.F., Liao, L.X., Celinski, Z., Schneider, C.M., and Myrtle, K., Mater. Res. Symp. Proc. 313, 119 (1993).Google Scholar
[8] de Vries, J.J., Kohlhepp, J., den Broeder, F.J.A., Verhaegh, P.A., Jungblut, R.R., Reinders, A., and de Jonge, W.J.M., J. Magn. Magn. Mater. 165, 435 (1997).Google Scholar
[9] Anderson, G.W., Hanf, M.C., Norton, P.R., Lu, Z.H., and Graham, M.J., Appl. Phys. Lett. 66, 1123 (1995).Google Scholar
[10] Anderson, C.W., Ma, P., and Norton, P.R., J. Appl. Phys. 79, 5641 (1996).Google Scholar
[11] Fullerton, E.E., Mattson, J.E., Lee, S.R., Sowers, C.H., Huang, Y.Y., Felcher, G., Bader, S.u., and Parker, F.T., J. Magn. Magn. Mater. 117, L301 (1992).Google Scholar
[12] Chaiken, A., Michel, R.P., and Wall, M.A., Phys. Rev. B53, 5518 (1996).Google Scholar
[13] Fanciulli, M., Weyer, G., von Känel, H., und Onda, N., Physica Scripta T54, 16 (1994).Google Scholar
[14] details of our CEMS-experiments will be published elsewhere.Google Scholar
[15] Folkerts, W. and Purcell, S.T., J. Magn. Magn. Mater. 111, 306 (1992).Google Scholar
[16] Shi, Z.P., Klein, B.M., and Lu, Z.W., (private communication).Google Scholar
[17] den Broeder, F.J.A. and Kohlhepp, J., Phys. Rev. Lett. 75, 3026 (1995);Google Scholar
Kohlhepp, J. and den Broeder, F.J.A., J. Magn. Magn. Mater. 156, 261 (1996); and J. Kohlhepp et al., to be published.Google Scholar