Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T19:13:51.363Z Has data issue: false hasContentIssue false

On APB Dragging and APB Energy Anisotropy in Binary Ni3Al

Published online by Cambridge University Press:  26 February 2011

Dennis M. Dimiduk
Affiliation:
AFWAL Materials Laboratory, Wright-Patterson AFB, OH 45433-6533
J. C. Williams
Affiliation:
Engineering Materials and Technology Laboratory, General Electric Co., One Neuman Way, Cincinnati, OH 45215-6301
A. W. Thompson
Affiliation:
Carnegie-Mellon University, Department of Metallurgical Engineering and Materials Science, Pittsburgh, PA 15213-3890
Get access

Abstract

Recent weak-beam electron microscopic studies of Ni3Al provided evidence indicating that glide of Kear-Wilsdorf locked dislocation segments may occur on {111} planes, accompanied by APB dragging, during deformation at high temperature. A direct implication of those studies is that a mechanism other than the onset of {010} slip may be important in controlling the peak in yield strength in Ni3Al. The present weak-beam investigations of Ni3Al have centered on the possibility that such configurations result from thermally induced dislocation kink and jog activity rather than the APB dragging mechanism. previously proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Flinn, P.A., Trans. AIME. 218, 145 (1960).Google Scholar
2. Kear, B.H. and Wilsdorf, H.G.F., Trans. AIME. 224, 382 (1962).Google Scholar
3. Thornton, P.H., Davies, R.V., & Johnston, T.L., Metall. Trans. 1A, 27 (1970).Google Scholar
4. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 415 (1973).CrossRefGoogle Scholar
5. Liang, S.-J. and Pope, D.P., Acta Metall. 25, 485 (1977).CrossRefGoogle Scholar
6. Lall, C., Chin, S., and Pope, D.P., Metall. Trans.. 10A, 1323 (1979).CrossRefGoogle Scholar
7. Paidar, V., Pope, D.P., and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
8. Yoo, M.H., Horton, J.A., and Liu, C.T., Acta Metall. 36, 2935 (1988).Google Scholar
9. Kear, B.H. and Hornbecker, M.F., Trans. ASM, 52, 155 (1966).Google Scholar
10. Mulford, R.A. and Pope, D.P., Acta Metall. 21, 1375 (1973).Google Scholar
11. Staton-Bevan, A.E. and Rawlings, R.D., Phil. Mag. 32, 787 (1975).Google Scholar
12. Saburi, T., Hamana, T., Nenno, S., and Pak, H-R., Jap. J. Appl. Phys. 16, 267 (1977).CrossRefGoogle Scholar
13. Baker, I. and Schulson, E.M., Phys. Stat. Sol. (a), 89, 163 (1985).Google Scholar
14. Baker, I., Schulson, E.M., and Horton, J.A., Acta Metall. 35, 1533 (1987).Google Scholar
15. Baker, I., Horton, J.A., and Schulson, E.M., Phil. Mag. Lett. 55, 3 (1987).Google Scholar
16. Veyssière, P., Guan, D.L., and Rabier, J., Phil. Mag. A, 49, 45 (1984).CrossRefGoogle Scholar
17. Veyssière, P., Phil. Mag. A, 50, 189 (1984).CrossRefGoogle Scholar
18. Veyssière, P., Douin, J., and Beauchamp, P., Phil. Mag. A, 51, 469 (1985).Google Scholar
19. Veyssière, P. and Douin, J., Phil. Mag. A, 51, L1 (1985).CrossRefGoogle Scholar
20. Douin, J., Veyssière, P., and Beauchamp, P., Phil. Mag. A., 54, 375 (1986).Google Scholar
21. Yan, W., Jones, I.P. and Smallman, R.E., Scripta Metall. 21, 1511 (1987).Google Scholar
22. Veyssière, P., Horton, J.A., Yoo, M.H., and Liu, C.T., Phil. Mag. Lett. 56, 17 (1988).Google Scholar
23. Yoo, M.H., Acta Metall. 35, 1559 (1987).Google Scholar
24. Paidar, V., Acta Metall. 33, 1803 (1985).Google Scholar
25. Janssen, M.M.P., Metal. Trans. 4, 1623 (1973).Google Scholar
26. Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd ed. (John-Wiley & Sons, Inc., New York, 1982) p. 533.Google Scholar