Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T20:31:00.344Z Has data issue: false hasContentIssue false

On Kinetically vs. Energetically Driven Growth Instabilities in Solid and Vapor Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

Michael J. Aziz*
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138
Get access

Abstract

A stress-induced kinetically-driven morphological instability is of general applicability to driven systems. The effect of stress on the reaction mobility for incorporation into the growing solid couples to stress variations along a perturbed planar growth front, resulting in amplification or decay of the perturbation depending on the sign of the stress. Experimentally we studied a model system in which stress is applied externally to a chemically pure substance, permitting us to isolate the effect of strain from any possible effects of composition, and found that the new kinetically-driven effect dominates the behavior for solid phase epitaxial growth (SPEG) of Si(001). A linear stability analysis of a sinusoidally perturbed planar growth front, incorporating both the kinetically and the energetically driven effects, has been performed. Stability maps are developed, indicating parameter ranges under which the morphological evolution is dominated by the energetically-driven instability, the kinetically-driven instability, and the kinetically-driven stabilization. Numerical values of the key dimensionless parameters for SPEG and for SiGe/Si(001) Molecular Beam Epitaxy (MBE) are very similar in cases where they are known, indicating that the kinetically-driven effect may be important in determining morphological evolution related to quantum dot formation in MBE as well

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Asaro, R. J. and Tiller, W. A., Metall. Trans. 3, 1789 (1972).Google Scholar
2 Grinfeld, M. A., Soy. Phys. Dokl. 31, 831 (1986).Google Scholar
3 Srolovitz, D. J., Acta Metall. 37, 621 (1989).Google Scholar
4 Shchukin, V. A. and Bimberg, D., Rev. Mod. Phys. 71, 1125 (1999).Google Scholar
5 Grinstein, G., Tu, Y., and Tersoff, J., Phys. Rev. Lett. 81, 2490 (1998).Google Scholar
6 Zhdanov, V. P., Phys. Rev. Lett. 83, 656 (1999).Google Scholar
7 Grinstein, G., Tu, Y., and Tersoff, J., Phys. Rev. Lett. 83, 657 (1999).Google Scholar
8 Gao, J., Int. J. Solids Structures 28, 703 (1991).Google Scholar
9 Spencer, B. J., Voorhees, P. W., and Davis, S. H., J. Appl. Phys. 73, 4955 (1993).Google Scholar
10 Barvosa-Carter, W., Aziz, M. J., Gray, L. J., and Kaplan, T., Phys. Rev. Lett. 81, 1445 (1998).Google Scholar
11 Yu, H. H. and Suo, Z., J. Appl. Phys. 87, 1211 (2000).Google Scholar
12 Voorhees, P. W. and Aziz, M. J., in Conference on Interfaces for the Twenty-First Century, edited by Smith, M. K. and McFadden, G. B. (Imperial College Press, 2000).Google Scholar
13 Aziz, M. J., Appl. Phys. Lett. 70, 2810 (1997).Google Scholar
14 Aziz, M. J., Sabin, P. C., and Lu, G.-Q., Phys. Rev. B 44, 9812 (1991).Google Scholar
15 Aziz, M. J., Circone, S., and Agee, C. B., Nature 390, 596 (1997).Google Scholar
16 Barvosa-Carter, W. and Aziz, M. J., Mater. Res. Soc. Symp. Proc. 441, 75 (1997).Google Scholar
17 Bernstein, N., Aziz, M. J., and Kaxiras, E., Phys. Rev. B 58, 4579 (1998).Google Scholar
18 Carter, W. B. and Aziz, M. J., Mat. Res. Soc. Symp. Proc. 356, 87 (1995).Google Scholar
19 Tersoff, j., Tu, Y., and Grinstein, G., Appl. Phys. Lett. 73, 2328 (1998).Google Scholar
20 Sage, J. F., Barvosa-Carter, W., and Aziz, M. J., Appl. Phys. Lett. 77, in press (2000).Google Scholar
21 Tanaka, S., Bartelt, N. C., Umbach, C. C., Tromp, R.M. and Blakely, J.M., Phys. Rev. Lett. 78, 3342 (1997).Google Scholar
22 Seki, H. and Koukitu, A., J. Cryst. Growth 78, 342 (1986).Google Scholar
23 Floro, J.A. (personal communication).Google Scholar
24 Guyer, J. E. and Voorhees, P. W., Phys. Rev. B 54, 11710 (1996).Google Scholar
25 Spencer, B. J., Voorhees, P. W., and Tersoff, J., Appl. Phys. Lett. 76, 3022 (2000).Google Scholar
26 Priester, C. and Grenet, G., J. Vac. Sch. Technol. B 16, 2421 (1998).Google Scholar