Hostname: page-component-68945f75b7-k8jzq Total loading time: 0 Render date: 2024-09-03T15:22:48.709Z Has data issue: false hasContentIssue false

On the dynamics of InGaN dot formation by RF-MBE growth

Published online by Cambridge University Press:  01 February 2011

Tomohiro Yamaguchi
Affiliation:
Institute of Solid State Physics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.
Sven Einfeldt
Affiliation:
Institute of Solid State Physics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.
Stephan Figge
Affiliation:
Institute of Solid State Physics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.
Carsten Kruse
Affiliation:
Institute of Solid State Physics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.
Claudia Roder
Affiliation:
Institute of Solid State Physics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.
Detlef Hommel
Affiliation:
Institute of Solid State Physics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.
Get access

Abstract

The growth of InGaN on GaN (0001) by plasma-assisted molecular beam epitaxy was investigated with special focus on the dynamics of the formation of the dots. A metastable 2D growth regime, where the surface changes from smooth to rough by thermal treatment during growth interruption, existed previous to the 2D-3D transition. Both small regular-shaped dots and large irregular-shaped islands were observed. The large islands were suppressed by choosing correct growth conditions. The critical thickness for the transition from 2D to 3D growth also depended on the growth conditions. The growth of GaN capping layer to cover InGaN dot-structure was also attempted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Heidelberg, 1997).Google Scholar
2. Akasaki, I. and Amano, H., Jpn. J. Appl. Phys., 36, 5393 (1997).Google Scholar
3. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
4. Chichibu, S. F., Abare, A. C., Minsky, M. S., Keller, S., Fleischer, S. B., Bowers, J. E., Hu, E., Mishra, U. K., Coldren, L. A., DenBaars, S. P., and Sota, S., Appl. Phys. Lett. 73, 2006 (1998).Google Scholar
5. O'Donnel, K. P., Martin, R. W., and Middleton, P. G., Phys. Rev. Lett. 82, 237 (1999).Google Scholar
6. Arakawa, Y., phys. stat. sol. (a) 188, 37 (2001).Google Scholar
7. Adelmann, C., Simon, J., Pelekanos, N. T., Samson, Y., Feuillet, G., and Daudin, B., phys. stat. sol. (a) 176, 639 (1999).Google Scholar
8. Adelmann, C., Simon, J., Feuillet, G., Pelekanos, N. T., and Daudin, B., Appl. Phys. Lett. 76, 1570 (2000).Google Scholar
9. Grandjean, N. and Massies, J., Appl. Phys. Lett. 72, 1078 (1998).Google Scholar
10. Damilano, B., Grandjean, N., Dalmasso, S., and Massies, J., Appl. Phys. Lett. 75, 3751 (1999).Google Scholar
11. Tachibana, K., Someya, T., and Arakawa, Y., Appl. Phys. Lett. 74, 383 (1999)Google Scholar
12. Tachibana, K., Someya, T., Arakawa, Y., Werner, R., and Forchel, A., Appl. Phys. Lett. 75, 2605 (1999).Google Scholar
13. Kim, H. J., Na, H., Kwon, S. Y., Seo, H. C., Kim, H. J., Shin, Y., Lee, K. H., Kim, D. H., Oh, H. J., Yoon, S., Sone, C., Park, Y., and Yoon, E., J. Cryst. Growth 269, 95 (2004).Google Scholar
14. Joyce, P. B., Krzyzewski, T. J., Bell, G. R., Jones, T. S., Ru, E. C. L., and Murray, R., Phys. Rev. B 64, 235317 (2001).Google Scholar