Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T09:24:15.105Z Has data issue: false hasContentIssue false

On the High Temperature Creep and Relaxation Behaviour of Zr-based Bulk Metallic Glasses

Published online by Cambridge University Press:  17 March 2011

B. S. S. Daniel
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
M. Heilmaier
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
A. Reger-Leonhard
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
J. Eckert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
L. Schultz
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
Get access

Abstract

Creep tests under constant load as well as constant true strain rate were carried out at near the glass transition temperatures (Tg) to study the time dependent flow behaviour of a Zr-based bulk metallic glass (BMG). The strain rate - stress relation over a wide strain rate-range (10-7 to 10-2 s-1) was established for different temperatures. The high temperature deformation behaviour is explained on the basis of stress induced creation of free volume versus diffusion controlled annihilation processes. It was found that the creep kinetics near Tg is controlled by the mobility of atoms with an activation energy value Q =410kJ/mol.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Inoue, A., Acta Mater., 48, 279 (2000).Google Scholar
2.Flores, K. M. and Dauskardt, R. H., Scripta Mater., 41, 927 (1999).Google Scholar
3.Suh, D. and Dauskardt, R. H., Scripta Mater., 42, 233 (2000).Google Scholar
4.Ismail, N., Uhlemann, M., Gebert, A., Eckert, J., J. Alloys and Compounds, 298, 146 (2000).Google Scholar
5.Hays, C. C., Kim, C., Johnson, W. L., Phys. Rev. Lett., 84, 2901 (2000).Google Scholar
6.Leonhard, A., Xing, L. Q., Heilmaier, M., Gebert, A., Eckert, J., Schultz, L., NanoStructured Materials, 10, 805 (1998).Google Scholar
7.Reger-Leonhard, A., Heilmaier, M., Eckert, J., Scripta Mater., 43, 459 (2000).Google Scholar
8.Spaepen, F., Acta Metall., 25, 407 (1977).Google Scholar
9.De Hey, P., Sietsma, J., Van den Beukel, A., Acta Mater., 46, 5873 (1998).Google Scholar
10.Taub, A. I., Acta Metall., 28, 633 (1980).Google Scholar
11.Taub, A. I. and Luborsky, F. E., Acta Metall., 29, 1939 (1981).Google Scholar
12.Kawamura, Y., Kato, H., Inoue, A., Matsumoto, T., Scripta Mater., 37, 431 (1997).Google Scholar
13.Kawamura, Y., Shibata, T., Inoue, A., Matsumoto, T., Mater. Trans. JIM, 40, 335 (1999).Google Scholar
14.Ehmler, H., Heesemann, A., Rätzke, K., Faupel, F., Geyer, U., Phys. Rev. Lett., 80, 4919 (1998).Google Scholar