Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T15:47:39.699Z Has data issue: false hasContentIssue false

One- and Two-Dimensional Carbon Clusters: Isomers, Structures and Isomer Abundances.

Published online by Cambridge University Press:  25 February 2011

Gert von Helden
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Ming-Teh Hsu
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Paul R. Kemper
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Michael T. Bowers
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Get access

Abstract

The new technique of ion structural chromatography is applied to carbon clusters. The results indicate that C5+ and C6+ are purely linear but C7+, C8+, C9+ and C1O+ have both linear and monocyclic ring structures. From C11+ to C20+ only monocyclic ring structures are observed. At C21+, a new family of planar ring structures appears. The first 3 dimensional structure occurs at C29+ and the first fullerene at C30+. Isomer structure is verified by the comparison of experimental mobilities with those derived from theory for the various structures. For C20+ only the monocyclic ring is observed experimentally but electronic structure calculations suggest more compact structures might be lower in energy. The results are discussed in terms of possible growth mechanisms for C60.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Kraetschmer, W., Fostropolos, K., Huffman, D.R., Chem. Phys. Lett. 170, 167 (1990); G. Meijer, D.S. Bethune, Chem. Phys. Lett., 175, 1 (1990); R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, M.M. Haley, S.C. O'Brien, C. Pan, Z. Xiao, W.E. Billups, M.A. Ciufolini, R.H. Hauge, J.L. Margrave, L.J.Wilson, R.F. Curl, R.E. Smalley, J. Phys. Chem., 94, 8634 (1990); F. Diederich, R. Ettl, Y. Rubin, R.L. Whetten, R. Beck, M. Alvarez, S. Anz, D. Sensharma, F. Wudl, K.C. Khemani and A. Koch, Science, 252, 548 (1991); R. Taylor, J.P. Hare, A.K. Abdulsada and H.W. Kroto, J. Chem. Soc. Chem. Comm., N20, 1423 (1990).CrossRefGoogle Scholar
(2) See, for example, Cox, M.D., Reichmann, K.C., Kaldor, A.J., J. Chem. Phys., 88, 1588 (1988); P.P. Radi, T. Bunn, P.R. Kemper, M. Molchan and M.T. Bowers, J. Chem. Phys., 88, 2809 (1988).Google Scholar
(3) Yang, S.H., Pettiette, C.L., Conceicao, J., Cheshnovsky, O., Smalley, R.E., Chem. Phys. Lett., 139, 3862 (1987).Google Scholar
(4) McElvany, S.W., Creasy, W.R. and O'Keefe, A., J. Chem. Phys., 85, 632 (1986); S.W. McElvany, B.I. Dunlap and A. O'Keefe, J. Chem. Phys., 86, 715 (1987); S.W. McElvany, J. Chem. Phys., 89, 2063 (1988); S.W. McElevany, Int. J. of Mass Spectrom. and Ion Proc., 102, 81 (1990); P.A. Hintz, M.B. Sowa, S.L. Anderson, Chem. Phys. Lett., 177, 146 (1991).Google Scholar
(5) (a)Hoffman, R., Tetrahedron, 22, 621 (1966); (b)Z. Slonina and R. Zahradnik, J. Phys. Chem., 81, 2252 (1977); (c)A.K. Ray, J. Phys. B.,20, 127 5233 (1987); (d)R.A. Whiteside, R. Krishman, D.J. Defrees, J.A. Pople and P. Von R. Schleyer, Chem. Phys. Lett., 78, 538 (1981); (e)D.H. Magers, R.J. Harrison, R.J. Bartlett, J. Chem. Phys., 84, 3284 (1986); (f)B.K. Rao, S.N. Khanna and P. Jena, Solid State Commun., 58, 53 (1986); (g)J. Bernholc and J.C. Phillips, J. Chem. Phys., 85, 3258 (1986); (h)K. Raghavachari, J.S. Binkley, J. Chem. Phys., 87, 2191 (1987); (i)V.Parasuk, J.Almloef, J. Chem. Phys., 91, 1137 (1989), (j)D. Bakowies, W. Thiel J. Am. Chem. Soc., 113, 3704 (1991), (k) V.Parasuk, J.Almloef, Chem. Phys. Lett., 184, 187 (1991), (1)M.Feyereisen, M.Gutowski, J.Simons and J.Almloef, J.Chem.Phys, 96, 2926 (1992), (m) C.J.Brabec, E.Anderson, B.N.Davidson, S.A.Kajihara, Q.M.Zhang, J.Bernholc, D.Tomanek, Phys. Rev. B Rapid Communications, accepted.Google Scholar
(6) Weltner, W., Zee, R. van, J. Chem. Rev. 89, 1713 (1989).Google Scholar
(7) Parent, D.C., McElevany, S.W., J. Am. Chem. Soc., 111, 632 (1989).Google Scholar
(8) Helden, G. von, Hsu, M.T., Kemper, P.R. and Bowers, M.T., J.Chem. Phys, 95, 3835(1991).Google Scholar
(9) Kemper, P.R., Bowers, M.T., J. Am. Chem. Soc. 112, 3231 (1990); J. Chem. Phys.95, 5134 (1991).CrossRefGoogle Scholar
(10) Helden, G. von, Kemper, P.R., Bowers, M.T., (unpublished).Google Scholar
(11) Mason, E.A., McDaniel, E.W., Transport Properties of Ions in Gases, Wiley and Sons, New York, 1988.Google Scholar
(12) Stewart, J.J.P. J.Computer-Aided Molecular Design, 4, 1 (1990).Google Scholar
(13) Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Jensen, J.H., Koseki, S., Gordon, M.S., Nguyen, K.A., Windus, T.L., Elbert, S.T., QCPE Bulletin, 10, 52 (1990).Google Scholar
(14) Palke, W.E., (unpublished)Google Scholar
(15) Gaussian 90, Revision J, Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., and Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1990.Google Scholar