Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T16:26:08.116Z Has data issue: false hasContentIssue false

Optical Analysis of Plasma Enhanced Crystallization of Amorphous Silicon Films

Published online by Cambridge University Press:  09 August 2011

L. Montès
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS (UMR 5588), 38402 Saint-Martin d'Hères Cedex, FRANCE, Laurent.MONTES@ujf-grenoble.fr
L. Tsybeskov
Affiliation:
ECE Department, University of Rochester, Rochester, NY 14627.
P. M. Fauchet
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS (UMR 5588), 38402 Saint-Martin d'Hères Cedex, FRANCE, Laurent.MONTES@ujf-grenoble.fr
K. Pangal
Affiliation:
ECE Department, Princeton University, Princeton, NJ 08544.
J. C. Sturm
Affiliation:
ECE Department, Princeton University, Princeton, NJ 08544.
S. Wagner
Affiliation:
ECE Department, Princeton University, Princeton, NJ 08544.
Get access

Abstract

Low-temperature crystallization of a-Si is important for display and Silicon-On- Insulator (SOT) technologies. We present optical characterization (Raman scattering and photoluminescence) of H2 and O2 plasma enhanced crystallization of a-Si:H films. H2 plasma treatment is shown to be the most efficient, leading to larger grain sizes, and both H2 and O2 plasma lead to visible photoluminescence (PL). Recently, the PL of re-crystallized a-Si films has been explained in terms of quantum confinement [1]. The mean size of the crystallites in our re-crystallized films is determined by Raman scattering for different treatments parameters. No correlation between size and the photon energy of the visible emission is found. However, we can clearly distinguish between the PL from purely amorphous and re-crystallized a-Si:H films: Their PL temperature dependence and spectra are very different. The origin of the visible PL in re-crystallized thin Si films is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tong, S., Liu, X. -n., and Bao, X. -m., Appl. Phys. Lett. 66 (4), 469 (1995); S.Tong, X.-n. Liu, T.Gao, X-m Bao, Y.Chang, W-z Shen and W.-g.Tang, Solid State Commun. 104 (10), 603 (1997).Google Scholar
2. Canham, L. T., Appl. Phys. Lett. 57 (10), 1046 (1990)Google Scholar
3. Solomon, I., Wehrspohn, R. B., Chazalviel, J. -N., Ozanam, F., J. Non-crystalline Solids 227–230, 248. (1998); M.J.Estes and G.Moddel, Appl. Phys. Lett. 68 (13), 1814 (1996).Google Scholar
4. Bustarret, E., Sauvain, E., and Rosenbauer, M., Thin Solid Films 276(1/2), 134 (1996).Google Scholar
5. Luterová, K., Knápek, P., Stuchlík, J., Kocka, J., Poruba, A., Kudrna, J., Malý, P., Valenta, J., Dian, J., Hönerlage, B., Pelant, I., J.Non-crystalline Solids, 227–230, 254 (1998).Google Scholar
6. Lockwood, D. J.,, Lu, Z. -H., and Baribeau, J. M., Phys. Rev. Letters 76 (3), 539 (1996); L.Tsybeskov, G.F.Groin, K.D.Hirshman, L.Montès, and P.M.Fauchet, T.N. Blanton, J.P.McCaffr-ey, J.M.Baribeau, G.I. Sproulc, H.J.Labbé and D.J.Lockwood, MRS Fall Meeting 1998 (Symp. F)Google Scholar
7. Pangal, K., Sturm, J. C. and Wagner, S., Proc. Symp. Mat. Res. Soc. 507 (1998) (to be published)Google Scholar
8. Fauchet, P. M., Light Scattering in Semiconductors Structures and Superlattices, edited by Lockwood, D. J. and Young, J. F., (Plenum Press, New York, 1991), p. 229 Google Scholar
9. Tsu, R., Gonzalez-Hemandez, J., Chao, S. S., Lee, S. C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982); E.Bustarret and M.A.Hachicha, M.Brunel, Appl. Phys. Lett. 52 (20), 1675 (1988)Google Scholar
10. Collins, R. W., Paesler, M. A- and Paul, W., Solid State Commun. 34: (10), 833 (1980)Google Scholar
11. Street, R A., Semiconductors and Semimetals, Vol.21B, edited by Pankove, J. I. (Academic Press, Orlando, 1984), p. 197 Google Scholar