Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T10:23:17.978Z Has data issue: false hasContentIssue false

Optical and Crystallographic Properties of Inverse Opal Photonic Crystals Grown by Atomic Layer Deposition

Published online by Cambridge University Press:  01 February 2011

Jeffrey S. King
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
Curtis W. Neff
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
Dawn L. Heineman
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
Elton D. Graugnard
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
Christopher J. Summers
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
Get access

Abstract

We report a technique for the formation of infiltrated and inverse opal structures that produces high quality, low porosity conformal material structures. ZnS:Mn and TiO2 were deposited within the void space of an opal lattice by atomic layer deposition. The resulting structures were etched with HF to remove the silica opal template. Infiltrated and inverse opals were characterized by SEM, XRD, and transmission/reflection spectroscopy. The reflectance spectra exhibited features corresponding to strong low and high order photonic band gaps in the (111) direction (γ-L). In addition, deliberate partial infiltrations and multi-layered inverse opals have been formed. The effectiveness of a post-deposition heat treatment for converting TiO2 films to rutile was also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. John, S., Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
2. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
3. Yablonovitch, E., Phys. Rev. Lett. 67, 2295 (1991).Google Scholar
4. Özbay, E., Michel, E., Tuttle, G., Biswas, R., Sigalas, M., Ho, K.-M., Appl. Phys. Lett. 64, 2059 (1994).Google Scholar
5. Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., Bur, J., Nature 394, 251 (1998).Google Scholar
6. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G. A., Toader, O., and Driel, H.M., Nature 405, 437 (2000).Google Scholar
7. Vlasov, Y. A., Bo, X-Z, Sturm, J. C., and Norris, D. J., Nature 414, 289 (2001).Google Scholar
8. Yates, H. M., Flavell, W. R., Pemble, M. E., Johnson, N. P., Romanov, S. G., and Sotomayor Torres, CM, J. Cryst. Growth 170, 611 (1997).Google Scholar
9. Romanov, S. G., De La Rue, R.M., Yates, H.M., and Pemble, M. E., J. Phys.: Cond. Matt. 12, 339 (2000).Google Scholar
10. King, J.S., Neff, C.W., Park, W., Blomquist, S., Forsythe, E., Morton, D., and Summers, C.J., Appl. Phys. Lett. 83, 2566 (2003).Google Scholar
11. Park, W., King, J.S., Neff, C.W., Liddell, C. and Summers, C.J., Phys. Stat. Sol. (b) 229, 949 (2002).Google Scholar
12. Sözüer, H. S, Haus, J. W., Inguva, R., Phys. Rev. B 45, 13962, (1992).Google Scholar
13. King, J.S., Neff, C. W., Park, W., Morton, D., Forsythe, E., Blomquist, S., and Summers, C.J.. Presented at 2002 MRS Fall Meeting, Boston, MA December 1–5, (2002) (unpublished).Google Scholar
14. Palik, E. D., Handbook of Optical Constants of Solids, San Diego: Academic Press (1998).Google Scholar
15. García-Santamaría, F., Ibisate, M, Rodríguez, I., Meseguer, F., Lopez, C., Adv. Mater., 15, 788 (2003).Google Scholar
16. Park, S. H., Qin, D., Xia, Y., Adv. Mater. 10, 1028 (1998).Google Scholar
17. Johnson, S.G. and Joannopoulos, J.D., Opt. Express 8, 173 (2001).Google Scholar
18. Blanco, A., Míguez, H., Meseguer, F., López, C., López-Tejeira, F., Sánchez-Dehesa, J., Appl. Phys. Lett. 78, 3181 (2001).Google Scholar
19. Aarik, J., Aidla, A., Uustare, T., Sammelselg, V., J. Crys Growth 148, 268 (1995).Google Scholar
20. King, J. S., Neff, C. W., Blomquist, S., Forsthe, E., Morton, D., and Summers, C. J., Physica Status Solidi, in press.Google Scholar
21. John, S., Busch, K. Journal of Lightwave Technology, 17, 1931 (1999).Google Scholar