Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-07T03:24:54.187Z Has data issue: false hasContentIssue false

Optical properties of GaN with Ga and N polarity

Published online by Cambridge University Press:  21 March 2011

M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
D. Huang
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
F. Yun
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
P. Visconti
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A. Also with Instituto per lo Studio di Nuovi Materiali per l'Elettronica, CNR, Via Arnesano, Lecce, Italy
T. King
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
H. Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
J. Jasinski
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A. Also with the Institute of Experimental Physics, Warsaw University, Warsaw, Poland
Z. Liliental-Weber
Affiliation:
Also with the Institute of Experimental Physics, Warsaw University, Warsaw, Poland
Get access

Abstract

We compared photoluminescence (PL) and cross-sectional transmission electron microscopy (TEM) characteristics of GaN samples with Ga and N polarities grown by molecular beam epitaxy (MBE) on sapphire substrates. Ga-polar films grown at low temperature typically have very smooth surfaces, which are extremely difficult to etch with acids or bases. In contrast, the N-polar films have rougher surfaces and can be easily etched in hot H3PO4 or KOH. The quality of the X-ray diffraction spectra is also much better in case of Ga-polar films. Surprisingly, PL efficiency is always much higher in the N-polar GaN, yet the features and shape of the PL spectra are comparable for both polarities. We concluded that, despite the excellent quality of the surface, MBE-grown Ga-polar GaN layers contain higher concentration of nonradiative defects. From the analyses of cross-sectional TEM investigations, we have found that Ga-polar films have high density of threading dislocations (5x109 cm-2) and low density of inversion domains (1x107 cm-2). For N-polar GaN the situation is the reverse: the density of dislocations and inversion domains are 5x108 and ~1x1011 cm-2, respectively. One of the important conclusions derived from the combined PL and TEM study is that inversion domains do not seem to affect the radiative efficiency very adversly, whereas dislocations reduce it significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Huang, D., Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Baski, A. A., King, T., and Morkoç, H., Appl. Phys. Lett. 78, 4145 (2001).Google Scholar
[2] Hellman, E. S., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).Google Scholar
[3] Chichibu, S. F., Setoguchi, A., Uedono, A., Yoshimura, K., and Sumiya, M., Appl. Phys. Lett. 78, 28 (2001).Google Scholar
[4] Kirilyuk, V., Zauner, A. R. A., Christianen, P. C. M., Weyher, J. L., Hageman, P. R., and Larsen, P. K., Appl. Phys. Lett. 76, 2355 (2000).Google Scholar
[5] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
[6] Dimitrov, R., Murphy, M., Smart, J., Schaff, W., Shealy, J. R., Eastman, L. F., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 87, 3375 (2000).Google Scholar
[7] Huang, D., Litton, C. W., Reshchikov, M. A., Yun, F., King, T., Baski, A. A., and Morkoç, H., presented at International Symposium on Compound Semiconductors, Tokyo, October 3, 2001; Proc. ISCS2001, WeM-3.Google Scholar
[8] Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996).Google Scholar
[9] Daudin, B., Rouviere, J. L., and Arlery, M., Appl. Phys. Lett. 69, 2480 (1996).Google Scholar
[10] Huang, D., Visconti, P., Reshchikov, M. A., Yun, F., King, T., Baski, A. A., Litton, C. W., Jasinski, J., Liliental, Z.-Weber, and Morkoç, H., Proc. ICNS4, to be published in Phys. Stat. Sol., November 2001.Google Scholar
[11] Jasinski, J., Swider, W., Liliental, Z.-Weber, Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Morkoç, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 78, 2297 (2001).Google Scholar
[12] Piquette, E. C., Bridger, P. M., Bandic, Z. Z., and McGill, T. C., J. Vac. Sci. Technol. B17, 1241 (1999).Google Scholar
[13] Romano, L. T. and Myers, T. H., Appl. Phys. Lett. 71, 3486 (1997).Google Scholar
[14] Pozina, G., Bergman, J. P., Paskova, T., and Monemar, B., Appl. Phys. Lett. 75, 4124 (1999).Google Scholar
[15] Schuck, P. J., Mason, M. D., Grober, R. D., Ambacher, O., Lima, A. P., Miskys, C., Dimitrov, R., and Stutzmann, M., Appl. Phys. Lett. 79, 952 (2001).Google Scholar
[16] Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., Romano, L. T., and Sakai, S., Jap. J. Appl. Phys. 37, L398 (1998).Google Scholar
[17] Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).Google Scholar
[18] Northrup, J. E., Neugebauer, J., and Romano, L. T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar
[19] Volm, D., Oettinger, K., Streibl, T., Kovalev, D., Ben-Chorin, M., Diener, J., Meyer, B. K., Majewski, J., Eckey, L., Hoffmann, A., Amano, H., Akasaki, I., Hiramatsu, K., and Detchprohm, T., Phys. Rev. B 53, 16543 (1996).Google Scholar