Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-29T05:16:42.523Z Has data issue: false hasContentIssue false

Optimal Selection of Foams and Honeycombs in Packaging Design

Published online by Cambridge University Press:  21 February 2011

J. Zhang
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.
M. F. Ashby
Affiliation:
Cambridge University Engineering Department, Trumpington St., Cambridge CB2 1PZ, U.K.
Get access

Abstract

The volume of foams used in packaging is enormous. Proper design requires identifying the right material and selecting the right density for each particular application. A new approach to package design is presented in the form of “the Packaging Selection Diagram”, from which the optimal density of a cellular material can be obtained once the maximum permitted stress of the packaging is known. This approach offers greater generality and simplicity than the existing methods such as the Janssen factor or the Energy Absorption Diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cousins, R. R. (1976a) J. Appl. Polymer Sci., 20, 2893.CrossRefGoogle Scholar
Cousins, R. R. (1976b) “Design Guide to the Use of Foams for Crash Padding”, NPL Report DMA 237, London.Google Scholar
Drysdale, J., Gordon, G. A., Wheeler, E. E. and Marsden, P. D. (1963) Package, 34, (396, 399, and 400), (March, June, and July) (Memoir No. 6, Packaging Div., PATRA.)Google Scholar
Gibson, L. J. and Ashby, M. F. (1988) “Cellular Solids: Structure and Properties”, Pergamon Press, Oxford.Google Scholar
Gordon, G. A. (1974) “Testing & Approval, Impact Strength & Energy Absorption”, PIRA.Google Scholar
Green, S. J., Schierloh, F. L., Perkins, R. D. and Babcock, S. G. (1969) Exp. Mech., March, 103.Google Scholar
Handbook of Industrial Materials, First Edition, Trade & Technical Press LTD, Surrey, U. K.Google Scholar
Hilyard, N. C. (ed.) (1982) “Mechanics of Cellular Plastics”, Applied Science Publishers, London.Google Scholar
Lee, W. M. and Williams, B. M. (1971) J. Cell. Plast., 7, 72.CrossRefGoogle Scholar
Lockett, F. J., Cousins, R. R. and Dawson, D. (1981) Plast. Rubber Proc. Appl., 1, 25.Google Scholar
Maiti, S. K., Gibson, L. J. and Ashby, M. F. (1984) Acta Metal., 32, 1963.CrossRefGoogle Scholar
Meinecke, E. A. and Schwaber, D. M. (1970) J. Appl. Polymer Sci., 14, 2239.CrossRefGoogle Scholar
Meinecke, E. A., Schwaber, D. M. and Chiang, R. R. (1971) J. Elastoplast., 3, 19.CrossRefGoogle Scholar
Melvin, J. W. and Roberts, V. L. (1971) J. Cell. Plast., 7, 97.CrossRefGoogle Scholar
Mustin, G. S. (1968) “Theory and Practice of Cushion Design”, US Government Printing Office, Washington, DC.Google Scholar
Rusch, K. C. (1970) J. Appl. Polymer Sci., 14, 1263 and 1433.CrossRefGoogle Scholar
Rusch, K. C. (1971) J. Cell. Plast., 7, 78.CrossRefGoogle Scholar
Schwaber, D. M. (1973) Polymer-Plast. Technol. Eng., 2, 231.CrossRefGoogle Scholar
Schwaber, D. M. and Meinecke, E. A. (1971) J. Appl. Polymer Sci., 157, 2381.CrossRefGoogle Scholar
Woolam, W. E. (1968) J. Cell. Plast., 4, 79.CrossRefGoogle Scholar
Zhang, J. (1989) Ph.D. Thesis, Cambridge University Engineering Dept., Cambridge, U.K. Google Scholar