Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-11T12:11:17.149Z Has data issue: false hasContentIssue false

Optoelectronic Junction Devices Based on Organic/Inorganic Hetero-paired Semiconductors

Published online by Cambridge University Press:  15 March 2011

R. Schroeder
Affiliation:
Center for Materials Science, Department of Physics & Astronomy, Bowling Green State University, Bowling Green, OH 43403-0224 Department of Physics & Astronomy, Virginia Tech, Blacksburg, VA 24061-0435
B. Ullrich
Affiliation:
Center for Materials Science, Department of Physics & Astronomy, Bowling Green State University, Bowling Green, OH 43403-0224
Get access

Abstract

The use of hybrid devices consisting of organic and inorganic semiconductors provides many advantages for optoelectronic applications, such as combining the high charge carrier mobilities in inorganic polycrystalline thin films and high photosensitivity, intense photoluminescence, and ease of deposition of conjugated molecules. In this paper, thin film hybrid structures based on organic conjugated molecules and II-VI inorganic semiconductors were fabricated using spin-coating, evaporation and pulsed-laser deposition (PLD), respectively. A promising hetero-pairing is CdS and DQP, a diisoquinoline perrylene derivate, with the potential to form sensitive photodiodes and effective solar cells. Varying the deposition techniques alters the quality of the interface between CdS and DQP and results in different efficiencies of charge collection and recombination in the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xu, Z., Zou, X., Zhou, X., Zhao, B., Wang, C.W., and Hamakawa, Y., J. Appl. Phys. 75, 588595 (1994).Google Scholar
2. Hübner, A., Aberle, A.G., and Hezel, R., Appl. Phys. Lett. 70, 10081010 (1996).Google Scholar
3. Niemegeers, A., and Burgelman, M., J. Appl. Phys. 81, 28812886 (1996).Google Scholar
4. Chung, B.-C., Virshup, G.F., Klausmeier-Brown, M., Ristow, M. Ladle, and Wanlass, M.W., Appl. Phys. Lett. 60, 16911693 (1992).Google Scholar
5. Tang, C..W., Appl. Phys. Lett. 48, 183185 (1986).Google Scholar
6. Brabec, C.J., Padinger, F., and Sariciftci, N.S., J. Appl. Phys. 85, 6866 (1999).Google Scholar
7. Yu, G., Srdanov, G., Wang, H., Cao, Y., and Heeger, A., Organic Photonic Materials and Devices II 3939, 118 (2000).Google Scholar
8. Granstrom, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R. and Friend, R. H., Nature 395, 257260 (1998).Google Scholar
9. Friend, R.H., Salaneck, W.R., Ono, Y., Granstrom, T. M., Petritsch, K., Arias, A.C. and Friend, R. H., Synth. Met. 102, 957958 (1999).Google Scholar
10. Schön, J.H., Kloc, Ch., and Batlogg, B., Appl. Phys. Lett. 77, 24732475 (2000).Google Scholar
11. Yudson, V.I., Reineker, P., and Agranovich, V.M., Phys. Rev. B 52, R55435545 (1995).Google Scholar
12. Guha, S., Haight, R.A., Bojarczuk, N.A., and Kisker, D.W., J. Appl. Phys. 82, 41264128 (1997).Google Scholar
13. Yang, X., and Xu, X., Appl. Phys. Lett. 77, 797799 (2000).Google Scholar
14. Wijekoon, W.M.K.P., Kyktey, M.Y.M, Prasad, P.N., and Garvey, J.F., Appl. Phys. Lett. 67, 16981699 (1995).Google Scholar
15. Bassani, F., Rocca, G.C. La, Basko, D.M., and Agranovich, V.M., Phys. Sol. State 41, 701703 (1999).Google Scholar
16. Ullrich, B., Sakai, H., Dushkina, N. M., Ezumi, H., Keitoku, S., and Kobayashi, T., Microelect. Engng. 43/44, 695700 (1998).Google Scholar
17. Sakai, H., Tamaru, T., Sumomogi, T., Ezumi, H., and Ullrich, B., Jpn. J. Appl. Phys. Part 1 37, 41494153 (1998).Google Scholar