Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T14:26:56.096Z Has data issue: false hasContentIssue false

Orbital Hybridization in Uranium Compounds and its Influence on Electronic Properties

Published online by Cambridge University Press:  01 February 2011

Wei Wang
Affiliation:
weiwang@anl.gov, Argonne National Laboratory, Argonne, IL, 60439, United States
Hong Zhang
Affiliation:
Hongzhang@anl.gov, Argonne National Laboratory, Argonne, IL, 60439, United States
Guokui Liu
Affiliation:
gkliu@anl.gov, Argonne National Laboratory, Chemical Sciences and Engineering, B200, Argonne, IL, 60439, United States
Get access

Abstract

Computational analysis and modeling of spectroscopic properties of trivalent uranium in crystals of hexagonal symmetry have been conducted with inclusion of the crystal-field induced orbital hybridization between the 5f3 and 5f26d configurations. It is shown that, in the absorption spectrum with energy above 20,000 cm-1, the mixing of 5f3 and 5f26d states is significant. The spectrum in this region cannot be interpreted by the conventional model of crystal field theory. The Judd-Ofelt theory is completely failed in predicating the intensities of optical absorption from the ground state to the configuration mixed excited states. A new Hamiltonian including the odd ranks of crystal field interaction is diagonalized on the bases of all 5f3 and 5f26d states. A simulation of absorption spectrum is optimized in comparison with the experimental spectrum for determination of the Hamiltonian parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schubert, E.F. and Kim, J.K. Science, 308, 1274 (2005).Google Scholar
2 Seelbinder, M.B. and Wright, J.C. Phys.Rev.B, 20, 4308 (1979).10.1103/PhysRevB.20.4308Google Scholar
3 Mulazzi, E., Nardelli, G.F. and Terzi, N., Phys.Rev. 172, 847 (1968).10.1103/PhysRev.172.847Google Scholar
4 Macfarlane, R. M. and Shellby, R. M., in Spectroscopy of solids containing rare earth ions, ed. Kaplyanskii, A. A. and Macfarlane, R. M., ( North-Holland, 1987), p62100.Google Scholar
5 Liu, G. K., in “Spectroscopic Properties of Rare Earths in Optical Materials” ed. Liu, G. K. and Jacquier, B., (Springer-Verlag, 2005), p194.Google Scholar
6 Wybourne, B.G. Spectroscopic Properties of Rare Earths, (John Wiley & Sons, Inc., 1965) pp.194205.Google Scholar
7 Carnall, W. T., J. Chem. Phys, 96, 8713(1992).Google Scholar
8 Liu, G.K. and Beitz, J.V. in “the chemistry of the actinide and transactinide eelements”, ed. Morss, Lester r., Fuger, Jean, and Edelstein, Norman, (springer, 2006), pp20132111.Google Scholar
9 Crosswhite, H.M. Crosswhite, H., Carnall, W.T. and Paszek, A.P. J. Chem. Phys. 72, 5103(1980)Google Scholar
10 Judd, B.R. Phys.Rev. 127, 750 (1962).10.1103/PhysRev.127.750Google Scholar
11 Ofelt, G.S. J.Chem.Phys. 37, 511 (1962).Google Scholar
12 Reid, M.F. Pieterson, L. van, Wegh, R.T. and Meijerink, A., Phys.Rev.B 62, 14744 (2000).Google Scholar
13 Judd, B.R. Crosswhite, H.M. and Crosswhite, H., Phys.Rev. 169, 130 (1968).Google Scholar
14 Furrer, R. and Hutchison, C.A. Jr., Phys.Rev.B 27, 5270 (1983).10.1103/PhysRevB.27.5270Google Scholar
15 Liu, G.K. Chen, X.Y. and Huang, J., Molecular Phys. 101, 1029 (2003)Google Scholar
16 Liu, G.K. Chen, X. Y., Edelstein, N.M. Reid, M.F. and Huang, J., J. Alloys and Comp. 374, 240 (2004)Google Scholar
17 Cohen, E. and Moos, H.W. Phys.Rev. 161, 258 (1967)10.1103/PhysRev.161.258Google Scholar