Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T12:30:56.788Z Has data issue: false hasContentIssue false

Organometallic Precursors to Vanadium and Titanium Carbonitride

Published online by Cambridge University Press:  25 February 2011

Francois Laurent
Affiliation:
CNRS Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France
Christophe Daures
Affiliation:
CNRS Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France
Lydie Valade
Affiliation:
CNRS Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France
Robert Choukroun
Affiliation:
CNRS Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France
Jean-Pierre Legros
Affiliation:
CNRS Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France
Patrick Cassoux
Affiliation:
CNRS Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France
Get access

Abstract

We repon on the syntheses, structural and thermoanalytical studies of two titanium complexes CpTiCl2N(SiMe3)2 and FTi[N(Sime3)2]3 and one vanadium complex V(NEt2)4. CpTiCl2N(SiMe3)2 has been used in a hot wall CVD reactor as a precursor to titanium nitride. Thin films of typically 1 XPS in thickness have been deposited at 600°C on glass, silicon and tool steel. XPS analyses of the deposits show titanium carbonitride to be formed. The new FTi[N(Sime3)2]3 complex can also be used as a precursor to titanium nitride. V(NEt2>4 led at 500°C to the deposition of vanadium carbonitride characterized by XPS analysis. Films tended to contain excess free carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Toth, L. E., in Transition Metal Carbides & Nitrides. Refractory Materials, Edited by Margrave, J.L., (Academic Press, New-York, 1971), Vol 7;Google Scholar
Juza, R., in Advances in Inorganic Chemistry and Radiochemistry, edited by Emeleus, H.J. and Sharpe, A.G., (Academic Press, New-York and London, 1966), Vol IX, p. 81.Google Scholar
2. Schintlmeister, W., Pacher, O., Pfaffinger, K., J. Electrochem. Soc. 123, 924 (1976).CrossRefGoogle Scholar
3. Kurtz, S. R, Gordon, R. G., Thin Solid Films 140, 277290 (1986).CrossRefGoogle Scholar
4. Sugiyama, K., Pac, S., Takahashi, Y., Motojima, S., J. Electrochem. Soc. 122, 15451549 (1975).CrossRefGoogle Scholar
5. Fix, R. M., Gordon, R. G., Hoffman, D. M., Chem. Mat. 2, 235241 (1990).CrossRefGoogle Scholar
6. Fix, R. M., Gordon, R. G., Hoffman, D. M., Chem. Mat. 3, 11381148 (1991).CrossRefGoogle Scholar
7. Bai, Y, Roesky, H. W., Noltemeyer, M., Z. Anorg. AUgem. Chem. 595, 2126 (1991.CrossRefGoogle Scholar
8. Laurent, F., Zhao, J. S., Vklade, L., Choukroun, R., Cassoux, P., Anal, J., and Appl. Pyrolysis 1992, submitted.Google Scholar
9. Bradley, D. C., Thomas, I. M., J. Chem. Soc. 1960, 3857.CrossRefGoogle Scholar
10. Laurent, F., Legros, J. P., Acta Crystallogr. 1992, submitted.Google Scholar
11. Bochmann, M., Wilson, L.M., Hursthouse, M. B., Motevalli, M., Organometallics 7, 11481154 (1988);CrossRefGoogle Scholar
Gambarotta, S., Floriani, C., Chiesivilla, A., Guastini, C., J. Amer. Chem. Soc. 101, 72957301 (1983); 104, 1918–1924 (1982);CrossRefGoogle Scholar
Thorn, D. L., Nugent, W. A., Harlow, R. L., J. Amer. Ceram. Soc. 103, 357363 (1981);Google Scholar
Burger, H., Wiegel, K., Thewalt, J., Schomberg, D., J. Organomet. Chem. 187, 301309 (1975);CrossRefGoogle Scholar
Fayos, J., Mootz, D. Z., Anorg, Z., Allgem. Chem. 380, 196201 (1971).CrossRefGoogle Scholar
12. Lappert, M. F., Sanger, A. R., Srivastava, R. C., Power, P. P., Metal and Metalloid Amides (J. Wiley& Sons Publishers, New-York, 1980).Google Scholar
13. Elemental analyses of the TGA residues of CpTiCl2N(SiMe3)2: under N2, C 25.3, H 0.9, N 9.0; under H2, C 20.2, H 0.5, N 11.0; these values correspond approximatively to the following ratios, Ti/C/N = 2/3/1 (N2), 2/2/1 (H2).Google Scholar
14. Wagner, C. D. et al. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie).Google Scholar