Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-28T08:28:14.387Z Has data issue: false hasContentIssue false

Oxidation Behavior of Pd-Si Compounds

Published online by Cambridge University Press:  15 February 2011

A. Cros*
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, (U.S.A.)
R. A. Pollak
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, (U.S.A.)
K. N. Tu
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, (U.S.A.)
*
Present address: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

The room temperature oxidation of PdSi, Pd2Si and Pd4Si has been studied using X-ray photoelectron spectroscopy (X-ray photoemission spectroscopy or electron spectroscopy for chemical analysis). We find that only silicon atoms in these silicides are oxidized and the oxidation of Pd4Si surfaces is enhanced compared with that of Pd2Si and PdSi, as is evidenced by both a higher silicon oxidation state and thicker oxide films. This behavior is discussed in terms of silicide stability and a spillover effect where palladium atoms catalyze molecular oxygen dissociation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tu, K. N. and Mayer, J. W., in Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films— Interdiffusion and Reactions, Wiley, New York, 1978, p. 359.Google Scholar
2 Ho, P. S. and Rubloff, G. W., Thin Solid Films, 89 (1982) 433, and references cited therein.Google Scholar
3 Bader, S. D., Richter, L., Brodsky, M. B., Brower, J. E. and Smith, G. V., Solid State Commun., 37 (1981) 729.Google Scholar
4 Ley, L. and Riley, J. D., Proc. 7th Int. Vacuum Congr., Vienna, 1977, Berger, Vienna, 1977, p. 2031.Google Scholar
5 Cros, A., Houzay, F., Guichar, G. M. and Pinchaux, R., Surf Sci., 116 (1982) L232.CrossRefGoogle Scholar
6 Cros, A., Derrien, J. and Salvan, F., Surf. Sci., 110 (1981) 471.Google Scholar
7 Abbati, I., Rossi, G., Calliari, L., Braicovitch, L., Lindau, I. and Spicer, W. E., J. Vac. Sci. Technol., 21 (2) (1982) 409.CrossRefGoogle Scholar
8 Canali, C., Majni, G., Ottaviani, G. and Celotti, G., J. Appl. Phys., 50 (1) (1979) 255.CrossRefGoogle Scholar
9 Grunthaner, P. J., Grunthaner, F. J. and Madhukar, A., J. Vac. Sci. Technol., 20 (3) (1982) 680.CrossRefGoogle Scholar
10 Hollinger, G., Jugnet, Y., Pertosa, P. and Duc, T. M., Chem. Phys. Lett., 36 (4) (1975) 441.CrossRefGoogle Scholar
11 Grunthaner, P. J., Grunthaner, F. J., Scott, D. M., Nicolet, M.-A. and Mayer, J. W., J. Vac. Sci. Technol., 19 (3) (1981) 641.Google Scholar
12 Murarka, S. P., Mater. Lett., I (1)(1982) 26.Google Scholar