Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T02:16:06.107Z Has data issue: false hasContentIssue false

Oxidation States in Layered Nickel Oxide Based Electrode Materials

Published online by Cambridge University Press:  25 February 2011

Claude Delmas*
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Get access

Abstract

NiO2 slabs made of edge-sharing NiO6 octahedra are the main structural parts of the positive electrode materials involved in Ni-Cd, Ni-M- and Li-LiNiO2 secondary batteries. These electrochemical systems are among the best ones for applications. The behavior of all these electrode materials can be optimized by substituting several cations for nickel.

The effect of iron and cobalt substitution has been investigated in detail. The oxidation state modifications resulting from the electrochemical cycling have been characterized from magnetic, conductivity, thermoelectric-power and Mössbauer studies. The overall results show that nickel ions are oxidized to the tetravalent state before cobalt ions. More surprisingly, the oxidation of iron-nickel mixed phases shows the simultaneous presence of tetravalent iron and nickel ions in the low spin configuration. For the first time, in situ M6ssbauer measurements have been performed during the cycling of a nickel-cadmium cell.

This cationic distribution results from the competition between the intrinsic redox properties of the 3d cations and the accommodation of the oxidation levels to the ligand field imposed by the prevailing cation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Delmas, C. and Saadoune, I., Solid State Ionics, 53–56, 370, (1992).Google Scholar
2. Rossen, E., Jones, C.D.W. and Dahn, J.R., Solid State lonics, 57, 311, (1992).Google Scholar
3. Braconnier, J.J., Delmas, C. and Hagenmuller, P., Mat. Res. Bull., 17, 993, (1982).Google Scholar
4. Delmas, C. in Chemical Physics of Intercalation, Legrand, A.R. and Flandrois, S., Eds., Nato ASI Series, 172, 207, (1987).Google Scholar
5. Dutta, G., Manthiram, A., Goodenough, J.B. and Grenier, J.I.C., J. Solid State Chem., 96, 123, (1992).Google Scholar
6. Delmas, C. (private communication).Google Scholar
7. Bode, H., Dehmelt, K. and Witte, J., Electrochem. Acta, 11 (8), 1079 (1966).Google Scholar
8. Oliva, P., Ldonardi, J., Laurent, J.F., Delmas, C., Braconnier, J.J., Figlarz, M., Fievet, F. and Geuibert, A. de, J. Power Sources, 8, 229, (1982).Google Scholar
9. Bihan, S. Le and Figlarz, M., J. Cryst. Growth, 13/14, 458, (1972).Google Scholar
10. Faure, C., Thesis of University of Bordeaux I (1990).Google Scholar
11. Delmas, C., Borthomieu, Y., Faure, C., Delahaye, A. and Figlarz, M., Solid State Ionics, 32/33, 104, (1989).Google Scholar
12. Faure, C., Delmas, C. and Willmann, P., J. Power Sources, 35, 263, (1991).Google Scholar
13. Faure, C., Delmas, C. and Willmann, P., J. Power Sources, 36, 497, (1991).Google Scholar
14. Delmas, C., Borthomieu, Y. and Faure, C., Proc. of the Electrochemical Society Meeting, 90–4, 119, (1990).Google Scholar
15. Saadoune, I., Thesis of University of Bordeaux I (1992).Google Scholar
16. Borthomieu, Y., Thesis of University of Bordeaux 1 (1990).Google Scholar
17. Rougier, A. and Delmas, C. (to be published)Google Scholar
18. Demourgues-Guerlou, L., Braconnier, J.J. and Delmas, C., J. Solid State Chem., in press.Google Scholar
19. Demourgues-Guerlou, L. and Delinas, C., J. Electrochem. Soc., submitted.Google Scholar
20. Demourgues-Guerlou, L., Fournms, L. and Delmas, C., Proc. of the Solid State Ionics E- MRS, ICAM 1991. Balkanski, M., Takahashi, T. and Tuller, H.L. (Ed.), 1992 - Elsevier Science Publishers B.V. Google Scholar
21. Demourgues-Guerlou, L., Fournms, L. and Delmas, C., J. Solid State Chem., to be published.Google Scholar
22. Demourgues-Guerlou, L., Thesis of University of Bordeaux 1 (1992).Google Scholar
23. Candela, G.A., Kahn, A.H. and Negas, T., J. Solid State Chem., 7, 360, (1973).Google Scholar
24. Goodenough, J.B., Wickham, D.G. and Croft, W.J., J. Phys. Chem. Solids, 5, 107, (1988).Google Scholar
25. Morales, J., Perez-Vicente, C. and Tirado, J.L., Mat. Res. Bull., 15, 623, (1990).Google Scholar
26. Reimers, J.N., Li, W. and Dahn, J.R., Phys. rev. B (in press).Google Scholar