Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T21:26:36.406Z Has data issue: false hasContentIssue false

Paramagnetic Centers in Microcrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

M. M. de Lima
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112, USA Departamento de Física Aplicada, Instituto de Física “Gleb Wathaghin”, Universidade Estadual de Campinas – Unicamp, Campinas – SP, Brazil.
S. Morrison
Affiliation:
M V Systems, Golden, CO 80401, USA.
A. LeGeune
Affiliation:
M V Systems, Golden, CO 80401, USA.
F. C. Marques
Affiliation:
Departamento de Física Aplicada, Instituto de Física “Gleb Wathaghin”, Universidade Estadual de Campinas – Unicamp, Campinas – SP, Brazil.
P. C. Taylor
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112, USA
Get access

Abstract

We have studied hydrogenated microcrystalline silicon, μc-Si:H, using dark and lightinduced electron spin resonance (ESR). In dark ESR measurements only one center is observed. The g values obtained empirically, assuming axial symmetry, from powder pattern lineshape simulations are g⊥∥ = 2.0096 and gτ = 2.0031. We suggest that this center is related to defects in the crystalline phase. Another signal, which occurs only after illumination, at low temperatures, is best described by two powder patterns indicating the presence of two centers. One center is slightly asymmetric (g∥ = 1.999, g⊥ = 1.996) and the other has a large unresolved broadening such that unique g-values cannot be obtained. The average g value for this center is 1.998. We interpret the light-induced electron spin resonance (LESR) signal as coming from electrons and holes trapped in the band tails at the crystalline grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Finger, F., Malten, C., Hapke, P., Carius, R., Flückiger, R., and Wagner, H., Phil. Mag. Lett. 70 (4), 247 (1994).10.1080/09500839408240982Google Scholar
2. Malten, C., Finger, F., Hapke, P., Kulessa, T., Walker, C., Carius, R., Flückiger, R., and Wagner, H., Mater. Res. Soc. Symp. Proc. 358, 757 (1995).Google Scholar
3. Muller, J., Finger, F., Malten, C., and Wagner, H., J. of Non-Crystalline Sol. 227-230, 1026 (1998).10.1016/S0022-3093(98)00347-0Google Scholar
4. Kondo, M., Yamasaki, S., and Matsuda, A., J. Non-Crystalline Sol. 266-269, 544 (2000).10.1016/S0022-3093(99)00870-4Google Scholar
5. Kondo, M., Nishimiaya, T., Saito, K., and Matsuda, A., J. Non-Crystalline Sol. 227-230, 1031 (1998).10.1016/S0022-3093(98)00276-2Google Scholar
6. Fuhs, W., Kanschat, P., and Lips, K., J. Vac. Sci. Technol. B 18, 1792 (2000).10.1116/1.591473Google Scholar
7. Kanschat, P., Lips, K., and Fuhs, W., J. Non-Crystalline Sol. 266-269, 524 (2000).10.1016/S0022-3093(99)00807-8Google Scholar
8. Hari, P., Taylor, P. C., and Finger, F., Amorphous Silicon Technology – 1996, edited by Hack, M. Shiff, E. A., Wagner, S., Schropp, R. and Matsuda, A. (Materials Research Society, Pittsburdgh, 1996), vol 420, p. 491.Google Scholar
9. Gutiierrez, J. J., Inglefield, C. E., An, C. P., DeLong, M. C., Taylor, P. C., Morrison, S., and Madan, A., Mat. Res. Symp. Proc. 664 A3.4 (2001).10.1557/PROC-664-A3.4Google Scholar
10. Madan, A., unpublished.Google Scholar
11.See, for example, Taylor, P. C. in Materials Issues in Applications of Amorphous Silicon Technology, Vol. 49, Adler, D., Madan, A. and Thompson, M.J., eds. (Materials Research Society, Pittsburgh, 1985), p. 61.Google Scholar
12. Finger, F., Müller, J., Malten, C., Carius, R., and Wagner, H., J. Non-Crystalline Sol. 266-269, 511 (2000).10.1016/S0022-3093(99)00802-9Google Scholar
13. Umeda, T., Yamasaki, S., Isoya, J., and Tanaka, K., Phys. Rev. B 59, 4849 (1999).10.1103/PhysRevB.59.4849Google Scholar
14. Sprenger, M., Muller, S. H., Sieverts, E. G., and ammerlaan, C. A. J., Phys. Rev. B 35, 1566 (1987).Google Scholar
15. Watkins, G. D. and Corbett, J. W., Phys. Rev. 138, A543 (1965).10.1103/PhysRev.138.A543Google Scholar
16. Lee, Y. H. and Corbett, J. W., Phys. Rev. B, 8, 2810 (1973).10.1103/PhysRevB.8.2810Google Scholar
17. Venezia, V. C. et al., Appl. Phys. Lett. 79, 1273 (2001).Google Scholar
18. Chakravarthi, S. and Dunham, S. T., J. Appl. Phys. 89, 4758 (2001).10.1063/1.1352680Google Scholar
19. Knights, J. C., Biegelsen, D. K., and Solomon, I., Sol. State Commun. 22, 133 (1977).Google Scholar
20. Street, R. A. and Biegelsen, D. K., and Knights, J. C., Phys. Rev. B 24, 969 (1981).10.1103/PhysRevB.24.969Google Scholar
21. Finger, F., Müller, J., Malten, C., and Wagner, H., Phil Mag B 77, 805 (1998).Google Scholar
22. Müller, J., Finger, F., Carius, R., and Wagner, H., Phys. Rev. B 60, 11666 (1999).10.1103/PhysRevB.60.11666Google Scholar
23. Malten, C., Finger, F., Müller, J., and Yamasaki, S., Mater. Res. Soc. Symp. Proc. 507, 757 (1998).10.1557/PROC-507-757Google Scholar